Python массивы (матрицы): как создавать, формат и базовые операции

Генератор с циклом

В языке Python также существует возможность генерировать список при помощи нескольких циклов, помещая их в квадратные скобки инициализации. В следующем примере используется две конструкции for, осуществляющие поочередный перебор значений для переменных i и j. Числовой диапазон для них (от 0 до 3), как и раньше, задается через методы range.

>>> data = 
>>> print(data)

Результатом выполнения данного кода станет создание списка data на основе поочередного перемножения переменных i и j. Благодаря циклам for, их значения увеличиваются пошагово. Таким образом, генерируется список из девяти элементов.

Работа с массивами с заданным размером в Python

Объявление массива в Python известного размера
Массив с определенным числом элементов N  в Python объявляется так, при этом всем элементам массива присваивается нулевое значениеНазвание массива = *NЗадание значений элементов массива в python.
Задать значение элементов массива можно при объявлении массива. Это делается такНазвание массива =
Название массива = значение элемента
При этом массив будет иметь фиксированный размер согласно количеству элементов.
Пример. Задание значений элементов массива в Python двумя способами.
Способ №1.a =
Способ №2.a = 0
a = 1
a = 2
a = 3
a = 4
Таблица основных типов данных в Python. 


При работе с массивами удобно использовать цикл for для перебора всех элементов массива.a = * размер массива
for i in range(размер массива):
    a = выражение

Размер массива в Питон можно узнать с помощью команды len(имя массива)
Пример программы на Python, которая вводит массив с клавиатуры, обрабатывает элементы и выводит на экран измененный массив С клавиатуры вводятся все элементы массива, значения элементов увеличиваются в два раза. Выводим все значения элементов в консоль. Чтобы элементы массива выводились в одну строку через пробел, используем параметр end =» » в операторе вывода на экран print(a, end = » «)a = * 4
for i in range(len(a)):
    i = str(i + 1)
    print(«Введите элемент массива » + i, end = » «)
    i = int(i)
    i = i — 1
    a = int(input())
print(«»)
for i in range(len(a)):
    a = a * 2
for i in range(len(a)):
    print(a, end = » «)Алгоритм поиска минимального значения массива в python
Нужно перебрать все элементы массива и каждый элемент сравнить с текущим минимумом. Если текущий элемент меньше текущего минимума, то этот элемент становится текущим минимумом.Алгоритм поиска максимального значения массива в python.
Аналогично, для поиска максимального значения нужно перебрать и сравнить каждый элемент с текущим максимумом. Если текущий элемент больше текущего максимума, то текущий максимум приравнивается к этому элементу.
Пример. Программа запрашивает значения элементов массива и выводит минимальное и максимальное значения на экран.a = * 9
for i in range(len(a) — 1):
    i = str(i + 1)
    print(«Введите элемент массива » + i, end = » «)
    i = int(i)
    a = int(input())
   
min = a
max = a

for i in range(len(a)):
    if (a< min):
        min = a   
    if (a > max):
        max = a        
min = str(min)
max = str(max)

print(«Минимальное значение = » + min)
print(«Максимальное значение = » + max)

Настройки поисковой системы

Когда вы делаете какой-то запрос в Google или Яндекс, тот и другой поисковик все равно задействует ваше местоположение, отталкиваясь от выставленных настроек.

ПК-версия

В Google довольно удобная система, ориентирующаяся на IP, под которым вы сидите. Соответственно, при включенном VPN или proxy результаты поиска через Гугл будут основываться на стране, IP-адрес которой используется.

Вы можете и сами изменить текущий регион для поиска, просто перейдя на главную страницу этой поисковой системы и нажав ссылку «Настройки» в правой нижней части окна. Из меню выберите «Настройки поиска».

Найдите здесь блок «Выбор региона» и установите тот, который хотите видеть в выдаче результатов после ввода поискового запроса.

С Яндексом все немного сложнее: даже при смене IP-адреса общие настройки геолокации окажутся неизменными, из-за чего при необходимости изменения города или страны в поисковых запросах понадобится редактировать одну из настроек сервиса (даже если у вас нет аккаунта этого поисковика или не осуществлен туда вход). Откройте страницу поиска и вверху слева отыщите кнопку «Настройка», нажмите на нее и перейдите к разделу «Изменить город».

Снимите галочку с автоматического определения местоположения и установите тот город, который вам нужен для персонализации результатов выдачи.

Мобильное приложение

В мобильном устройстве геолокация для поисковых систем настраивается схожим образом.

  1. Для Google здесь, к слову, уже не всегда достаточно включить VPN — иногда он может по-прежнему определять ту страну, в которой вы находитесь.

Изменить ее можно точно так же, как это было показано для компьютера: тапните по слову «Настройки», перейдите в «Настройки поиска».

В блоке «Регион поиска» разверните меню и выберите нужный вариант.

Пользователям поисковика Яндекс понадобится выполнить больше действий.

  1. Нажмите на сервисную кнопку меню.

Тапните по своему профилю.

Если вы авторизованы, откроется страница Яндекс.Паспорта, где в правой верхней части нажмите на свою аватарку и из меню выберите «Настройки».

Тут вам нужен первый же пункт «Местоположение».

Укажите тот город, который нужен, по необходимости сняв галочку с автоматического определения.

Вы также можете переключить регион в «Настройках» Яндекс.Браузера, однако этот параметр особо ни на что не влияет кроме оптимизации некоторых поисковых алгоритмов. Любой поисковик и сайт будет по-прежнему видеть указанный в его внутренних настройках регион. Его изменение любым образом, продемонстрированным в этом способе, актуален только для поисковых систем, другие сайты продолжат видеть ваш город на основании IP или других параметров.

Массив нарезки

Все идет нормально; Создание и индексация массивов выглядит знакомо.

Теперь мы подошли к нарезке массивов, и это одна из функций, которая создает проблемы для начинающих массивов Python и NumPy.

Структуры, такие как списки и массивы NumPy, могут быть нарезаны. Это означает, что подпоследовательность структуры может быть проиндексирована и извлечена.

Это наиболее полезно при машинном обучении при указании входных и выходных переменных или разделении обучающих строк из строк тестирования.

Нарезка задается с помощью оператора двоеточия ‘:’ с ‘от’ а также ‘в‘Индекс до и после столбца соответственно. Срез начинается от индекса «от» и заканчивается на один элемент перед индексом «до».

Давайте рассмотрим несколько примеров.

Одномерная нарезка

Вы можете получить доступ ко всем данным в измерении массива, указав срез «:» без индексов.

При выполнении примера печатаются все элементы в массиве.

Первый элемент массива можно разрезать, указав фрагмент, который начинается с индекса 0 и заканчивается индексом 1 (один элемент перед индексом «до»)

Выполнение примера возвращает подмассив с первым элементом.

Мы также можем использовать отрицательные индексы в срезах. Например, мы можем нарезать последние два элемента в списке, начав срез с -2 (второй последний элемент) и не указав индекс «до»; это берет ломтик до конца измерения.

Выполнение примера возвращает подмассив только с двумя последними элементами.

Двумерная нарезка

Давайте рассмотрим два примера двумерного среза, которые вы, скорее всего, будете использовать в машинном обучении.

Разделение функций ввода и вывода

Распространено загруженные данные на входные переменные (X) и выходную переменную (y).

Мы можем сделать это, разрезая все строки и все столбцы до, но перед последним столбцом, затем отдельно индексируя последний столбец.

Для входных объектов мы можем выбрать все строки и все столбцы, кроме последнего, указав ‘:’ в индексе строк и: -1 в индексе столбцов.

Для выходного столбца мы можем снова выбрать все строки, используя ‘:’, и индексировать только последний столбец, указав индекс -1.

Собрав все это вместе, мы можем разделить 3-колоночный 2D-набор данных на входные и выходные данные следующим образом:

При выполнении примера печатаются разделенные элементы X и y

Обратите внимание, что X — это двумерный массив, а y — это одномерный массив

Сплит поезд и тестовые ряды

Обычно загруженный набор данных разбивают на отдельные наборы поездов и тестов.

Это разделение строк, где некоторая часть будет использоваться для обучения модели, а оставшаяся часть будет использоваться для оценки мастерства обученной модели.

Для этого потребуется разрезать все столбцы, указав «:» во втором индексе измерения. Набор обучающих данных будет содержать все строки от начала до точки разделения.

Тестовым набором данных будут все строки, начиная с точки разделения до конца измерения.

Собрав все это вместе, мы можем разделить набор данных в надуманной точке разделения 2.

При выполнении примера выбираются первые две строки для обучения и последняя строка для набора тестов.

Перестройка массива

После нарезки данных вам может понадобиться изменить их.

Например, некоторые библиотеки, такие как scikit-learn, могут требовать, чтобы одномерный массив выходных переменных (y) был сформирован как двумерный массив с одним столбцом и результатами для каждого столбца.

Некоторые алгоритмы, такие как рекуррентная нейронная сеть с короткой кратковременной памятью в Keras, требуют ввода данных в виде трехмерного массива, состоящего из выборок, временных шагов и функций.

Важно знать, как изменить ваши массивы NumPy, чтобы ваши данные соответствовали ожиданиям конкретных библиотек Python. Мы рассмотрим эти два примера

Форма данных

Массивы NumPy имеют атрибут shape, который возвращает кортеж длины каждого измерения массива.

Например:

При выполнении примера печатается кортеж для одного измерения.

Кортеж с двумя длинами возвращается для двумерного массива.

Выполнение примера возвращает кортеж с количеством строк и столбцов.

Вы можете использовать размер измерений вашего массива в измерении формы, например, указав параметры.

К элементам кортежа можно обращаться точно так же, как к массиву, с 0-м индексом для числа строк и 1-м индексом для количества столбцов. Например:

Запуск примера позволяет получить доступ к конкретному размеру каждого измерения.

Изменить форму 1D в 2D Array

Обычно требуется преобразовать одномерный массив в двумерный массив с одним столбцом и несколькими массивами.

NumPy предоставляет функцию reshape () для объекта массива NumPy, который можно использовать для изменения формы данных.

Функция reshape () принимает единственный аргумент, который задает новую форму массива. В случае преобразования одномерного массива в двумерный массив с одним столбцом кортеж будет иметь форму массива в качестве первого измерения (data.shape ) и 1 для второго измерения.

Собрав все это вместе, мы получим следующий проработанный пример.

При выполнении примера печатается форма одномерного массива, изменяется массив, чтобы иметь 5 строк с 1 столбцом, а затем печатается эта новая форма.

Изменить форму 2D в 3D Array

Обычно требуется преобразовать двумерные данные, где каждая строка представляет последовательность в трехмерный массив для алгоритмов, которые ожидают множество выборок за один или несколько временных шагов и одну или несколько функций.

Хорошим примером являетсямодель в библиотеке глубокого обучения Keras.

Функция изменения формы может использоваться напрямую, указывая новую размерность. Это ясно с примером, где каждая последовательность имеет несколько временных шагов с одним наблюдением (функцией) на каждый временной шаг.

Мы можем использовать размеры в атрибуте shape в массиве, чтобы указать количество выборок (строк) и столбцов (временных шагов) и зафиксировать количество объектов в 1

Собрав все это вместе, мы получим следующий проработанный пример.

При выполнении примера сначала печатается размер каждого измерения в двумерном массиве, изменяется форма массива, а затем суммируется форма нового трехмерного массива.

Базовые операции

Математические операции над массивами выполняются поэлементно. Создается новый массив, который заполняется результатами действия оператора.

>>> import numpy as np
>>> a = np.array()
>>> b = np.arange(4)
>>> a + b
array()
>>> a - b
array()
>>> a * b
array()
>>> a  b  # При делении на 0 возвращается inf (бесконечность)
array()
<string>:1: RuntimeWarning: divide by zero encountered in true_divide
>>> a ** b
array()
>>> a % b  # При взятии остатка от деления на 0 возвращается 0
<string>:1: RuntimeWarning: divide by zero encountered in remainder
array()

Для этого, естественно, массивы должны быть одинаковых размеров.

>>> c = np.array(, 4, 5, 6]])
>>> d = np.array(, 3, 4], 5, 6]])
>>> c + d
Traceback (most recent call last):
  File "<input>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (2,3) (3,2)

Также можно производить математические операции между массивом и числом. В этом случае к каждому элементу прибавляется (или что вы там делаете) это число.

>>> a + 1
array()
>>> a ** 3
array()
>>> a < 35  # И фильтрацию можно проводить
array(, dtype=bool)

NumPy также предоставляет множество математических операций для обработки массивов:

>>> np.cos(a)
array()
>>> np.arctan(a)
array()
>>> np.sinh(a)
array()

Полный список можно посмотреть здесь.

Многие унарные операции, такие как, например, вычисление суммы всех элементов массива, представлены также и в виде методов класса ndarray.

>>> a = np.array(, 4, 5, 6]])
>>> np.sum(a)
21
>>> a.sum()
21
>>> a.min()
1
>>> a.max()
6

По умолчанию, эти операции применяются к массиву, как если бы он был списком чисел, независимо от его формы. Однако, указав параметр axis, можно применить операцию для указанной оси массива:

Обработка элементов двумерного массива

Нумерация элементов двумерного массива, как и элементов одномерного массива, начинается с нуля.
Т.е. — это элемент третьей строки четвертого столбца.

Пример обработки элементов матрицы:
Найти произведение элементов двумерного массива.

Решение: 

1
2
3
4
5
p = 1 
for i in range(N): 
    for j in range(M): 
       p *= matrixij 
print (p)

Пример:
Найти сумму элементов двумерного массива.

Решение: 

Более подходящий вариант для Python:

1
2
3
4
s =  
for row in matrix: 
   s += sum(row) 
print (s)

Для поиска суммы существует стандартная функция sum.

Задание Python 8_0:
Получены значения температуры воздуха за 4 дня с трех метеостанций, расположенных в разных регионах страны:

Номер станции 1-й день 2-й день 3-й день 4-й день
1 -8 -14 -19 -18
2 25 28 26 20
3 11 18 20 25

Т.е. запись показаний в двумерном массиве выглядела бы так:

t:=-8; t:=-14; t:=-19; t:=-18;
t:=25; t:=28; t:=26; t:=20;
t:=11; t:=18; t:=20; t:=25;
  1. Распечатать температуру на 2-й метеостанции за 4-й день и на 3-й метеостанции за 1-й день.
  2. Распечатать показания термометров всех метеостанций за 2-й день.
  3. Определить среднюю температуру на 3-й метеостанции.
  4. Распечатать, в какие дни и на каких метеостанциях температура была в диапазоне 24-26 градусов тепла.

Задание Python 8_1:
Написать программу поиска минимального и максимального элементов матрицы и их индексов.

Задание Python 8_2:
Написать программу, выводящую на экран строку матрицы, сумма элементов которой максимальна.

Для обработки элементов квадратной матрицы (размером N x N):
Для элементов главной диагонали достаточно использовать один цикл:

for i in range(N): 
   # работаем с matrix

Для элементов побочной диагонали:

for i in range(N): 
   # работаем с matrix

Пример:Переставить 2-й и 4-й столбцы матрицы. Использовать два способа.

Решение: 

  1. for i in range(N): 
      c = Ai2 
      Ai2 = Ai4 
      Ai4 = c
  2. for i in range(N): 
      Ai2, Ai4 = Ai4, Ai2

Задание Python 8_3:
Составить программу, позволяющую с помощью датчика случайных чисел сформировать матрицу размерностью N. Определить:
минимальный элемент, лежащий ниже побочной диагонали;
произведение ненулевых элементов последней строки.

Копии и представления

При работе с массивами, их данные иногда необходимо копировать в другой массив, а иногда нет. Это часто является источником путаницы. Возможно 3 случая:

Вообще никаких копий

Простое присваивание не создает ни копии массива, ни копии его данных:

Python передает изменяемые объекты как ссылки, поэтому вызовы функций также не создают копий.

Представление или поверхностная копия

Разные объекты массивов могут использовать одни и те же данные. Метод view() создает новый объект массива, являющийся представлением тех же данных.

Срез массива это представление:

Глубокая копия

Метод copy() создаст настоящую копию массива и его данных:

Строки и списки в Python состоят из элементов, занимающих свои нумерованные позиции в иерархии. К любому элементу, можно обратиться по его порядковому номеру – индексу. Отсчет начинается с нуля и ведется слева направо.

Двумерные массивы

Выше везде элементами массива были числа. Но на самом деле элементами массива может быть что угодно, в том числе другие массивы. Пример:

a = 
b = 
c = 
z = 

Что здесь происходит? Создаются три обычных массива , и , а потом создается массив , элементами которого являются как раз массивы , и .

Что теперь получается? Например, — это элемент №1 массива , т.е. . Но — это тоже массив, поэтому я могу написать — это то же самое, что , т.е. (не забывайте, что нумерация элементов массива идет с нуля). Аналогично, и т.д.

То же самое можно было записать проще:

z = , , ]

Получилось то, что называется двумерным массивом. Его можно себе еще представить в виде любой из этих двух табличек:

Первую табличку надо читать так: если у вас написано , то надо взять строку № и столбец №. Например, — это элемент на 1 строке и 2 столбце, т.е. -3. Вторую табличку надо читать так: если у вас написано , то надо взять столбец № и строку №. Например, — это элемент на 2 столбце и 1 строке, т.е. -3. Т.е. в первой табличке строка — это первый индекс массива, а столбец — второй индекс, а во второй табличке наоборот. (Обычно принято как раз обозначать первый индекс и — второй.)

Когда вы думаете про таблички, важно то, что питон на самом деле не знает ничего про строки и столбцы. Для питона есть только первый индекс и второй индекс, а уж строка это или столбец — вы решаете сами, питону все равно

Т.е. и — это разные вещи, и питон их понимает по-разному, а будет 1 номером строки или столбца — это ваше дело, питон ничего не знает про строки и столбцы. Вы можете как хотите это решить, т.е. можете пользоваться первой картинкой, а можете и второй — но главное не запутайтесь и в каждой конкретной программе делайте всегда всё согласованно. А можете и вообще не думать про строки и столбцы, а просто думайте про первый и второй индекс.

Обратите, кстати, внимание на то, что в нашем примере (массив, являющийся вторым элементом массива ) короче остальных массивов (и поэтому на картинках отсутствует элемент в правом нижнем углу). Это общее правило питона: питон не требует, чтобы внутренние массивы были одинаковой длины

Вы вполне можете внутренние массивы делать разной длины, например:

x = , , , [], ]

здесь нулевой массив имеет длину 4, первый длину 2, второй длину 3, третий длину 0 (т.е. не содержит ни одного элемента), а четвертый длину 1. Такое бывает надо, но не так часто, в простых задачах у вас будут все подмассивы одной длины.

(На самом деле даже элементы одного массива не обязаны быть одного типа. Можно даже делать так: , здесь нулевой элемент массива — сам является массивом, а еще два элемента — просто числа. Но это совсем редко бывает надо.)

Форма матрицы в Python

Lenght matrix (длина матрицы) в Python определяет форму. Длину матрицы проверяют методом shape().

Массив с 2-мя либо 3-мя элементами будет иметь форму (2, 2, 3). И это состояние изменится, когда в shape() будут указаны аргументы: первый — число подмассивов, второй — размерность каждого подмассива.

Те же задачи и ту же операцию выполнит reshape(). Здесь lenght и другие параметры matrix определяются числом столбцов и строк.

Есть методы и для манипуляции формой. Допустим, при манипуляциях с двумерными или многомерными массивами можно сделать одномерный путём выстраивания внутренних значений последовательно по возрастанию. А чтобы поменять в матрице строки и столбцы местами, применяют transpose().

Операция in

С помощью in мы можем проверить наличие элемента в списке, строке и любой другой итерируемой переменной.

fruits =
if ‘Apple’ in fruits:

    print(‘В списке есть элемент Apple’)

>>> В списке есть элемент Apple

fruits =
if ‘Lemon’ in fruits:

    print(‘В списке есть элемент Lemon’)
else:’

    print(‘В списке НЕТ элемента Lemon’)

>>> В списке НЕТ элемента Lemon

Приведу более сложный пример:

all_fruits =

my_favorite_fruits =
for item in all_fruits:

    if item in my_favorite_fruits:

        print(item + ‘ is my favorite fruit’)

    else:

        print(‘I do not like ‘ + item)

>>> Apple is my favorite fruit
>>> I do not like Grape
>>> I do not like Peach
>>> Banan is my favorite fruit
>>> Orange is my favorite fruit

Добавление нового массива

Перед процессом создание нового массива, необходимо выполнить некоторые действия. Для начала, стоит произвести импорт библиотеки, которая отвечает за работу с подобными объектами. Чтобы выполнить это действие, нужно добавить в файл программы следующую строку: from array import *.

Исходя из того, что массивы предназначены для работы с одним типом данных, то и, соответственно, размер ячеек этих данных также будет одинаков.

Для создания нового массива данных используется такая функция, как «array». Ниже представлен пример того, как заполняется массив с помощью перечисленных действий:

from array import *data = array(‘i’, )

Функция «array» способна принимать два аргумента, одним из них является вид массива, который создается, другим – исходный перечень значений массива. В этом примере i является числом, размер которого составляет 2 б. Стоит отметить, что можно использовать не только этот примитив, но и другие – c, f и т. д.

Действия для добавления нового элемента

Для того, чтобы в массиве появился новый элемент, необходимо воспользоваться таким методом, как «insert». Это делается с помощью ввода в созданный ранее объект двух значений, являющихся аргументами. Цифра 3 представляет собой не что иное, как само значение, а 4 указывает на место в массиве, где будет располагаться элемент, т. е. его индекс.

Действия для удаления нового элемента

В рассматриваемом языке программирования избавиться от лишних элементов можно посредством такого метода, как «pop». Данный метод имеет аргумент (3) и может быть вызван через объект, который создавался ранее, т. е. способом, аналогичным добавлению нового элемента.

data.pop(3)

После того, как произошло удаление лишнего, в массиве происходит сдвиг его содержимого таким образом, чтобы число свободных ячеек памяти совпало с текущим количеством элементов.

Проверка

Зачастую возникает необходимость проверки данных при работе с любой программой, которая проводится путем вывода на экран. Эта операция может быть совершена с помощью такой команды, как «print». Аргументом для этой функции является элемент массива, созданного ранее.

В нижеприведенном примере видно, что обработка массива происходит с помощью цикла «for», в котором любой элемент массива идентификатором i для передачи в «print».

2. Синтаксис

Важно

Общие принципы важные для понимания:

  • Ввод — это итератор — это может быть функция-генератор, выражение-генератор, коллекция — любой объект поддерживающий итерацию по нему.
  • Условие — это фильтр при выполнении которого элемент пойдет в финальное выражение, если элемент ему не удовлетворяет, он будет пропущен.
  • Финальное выражение — преобразование каждого выбранного элемента перед его выводом или просто вывод без изменений.

несколько условий, комбинируя их логическими операторами

2.4 Ветвление выражения

Обратите внимание:if-else для ветвления финального выражения

  • Условия ветвления пишутся не после, а перед итератором.
  • В данном случае if-else это не фильтр перед выполнением выражения, а ветвление самого выражения, то есть переменная уже прошла фильтр, но в зависимости от условия может быть обработана по-разному!

комбинировать фильтрацию и ветвление

Обработка и вывод вложенных списков

Часто в задачах приходится хранить прямоугольные таблицы с данными.
Такие таблицы называются матрицами или двумерными массивами. В языке
программирования Питон таблицу можно представить в виде списка строк,
каждый элемент которого является в свою очередь списком, например, чисел.
Например, создать числовую таблицу из двух строк и трех столбцов можно так:

A = ,  ]

Здесь первая строка списка является списком из чисел
. То есть

A == 1,   A == 2,   A == 3

A == 4,   A == 5,   A == 6

Для обработки и вывода списка как правило используется два вложенных
цикла. Первый цикл по номеру строки, второй цикл по элементам внутри строки.
Например, вывести двумерный числовой список на экран построчно,
разделяя числа пробелами внутри одной строки, можно так:

for i in range(len(A)):
    for j in range(len(A):
        print(A, end = ' ')
    print()

То же самое, но циклы не по индексу, а по значениям списка:

for row in A:
    for elem in row:
        print(elem, end = ' ')
    print()

Естественно для вывода одной строки можно воспользоваться
методом :

for row in A:
    print(' '.join(list(map(str, row))))

Используем два вложенных цикла для подсчета суммы всех
чисел в списке:

S = 0
for i in range(len(A)):
    for j in range(len(A)):
        S += A

Или то же самое с циклом не по индексу, а по значениям строк:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector