Tcp/ip
Содержание:
Управление таймером
TCP использует различные типы таймеров для управления и управления различными задачами:
Таймер сохранения:
- Этот таймер используется для проверки целостности и действительности соединения.
- Когда время ожидания сохраняется, хост отправляет пробник, чтобы проверить, существует ли соединение еще.
Таймер повторной передачи:
- Этот таймер поддерживает сеанс передачи данных с сохранением состояния.
- Если подтверждение отправленных данных не будет получено в течение времени повторной передачи, сегмент данных будет отправлен снова.
Постоянный таймер:
- Сеанс TCP может быть приостановлен хостом, отправив Размер окна 0.
- Чтобы возобновить сеанс, хосту необходимо отправить размер окна с некоторым большим значением.
- Если этот сегмент никогда не достигнет другого конца, оба конца могут ждать друг друга в течение бесконечного времени.
- Когда таймер Persist истекает, хост повторно отправляет свой размер окна, чтобы узнать другой конец. Persist Timer помогает избежать взаимоблокировок в общении.
Timed-Wait:
- После освобождения соединения один из хостов ждет времени с пометкой времени, чтобы полностью завершить соединение.
- Это делается для того, чтобы убедиться, что другой конец получил подтверждение своего запроса о завершении соединения.
- Выдержка может быть не более 240 секунд (4 минуты).
Соединение TCP
TCP для передачи данных использует соединение. Соединение нужно установить перед тем, как начать передачу данных, а после того как передача данных завершена, соединение разрывается.
Задачи соединения
- Убедиться в том, что отправитель и получатель действительно хотят передавать данные друг другу
- Договориться о нумерации потоков байт. С точки зрения практической реализации нельзя всегда нумеровать данные в потоке байт с нуля. Каждый раз начальное значение для нумерации байт выбираются по определенному алгоритму и отправитель и получатель должны договориться между собой какое начальное значение они будут использовать для нумерации потока байт.
- При установке соединения происходит договоренность о некоторых параметрах соединения.
Установка соединения в TCP
Отправитель посылает запрос на установку соединения сообщение SYN от слова синхронизация. Также в сегмент включаются порядковый номер передаваемого байта.
Получатель в ответ передаёт сообщение SYN, куда включает подтверждение получения предыдущего сообщения ACK от слова acknowledge и порядковый номер байта, который он ожидает 7538, потому что на предыдущем этапе был получен байт с номером 7537.
Также отправитель включает в сегмент номер байта в потоке байт 36829. Номера байт в первом сообщении не могут быть всегда нулевыми, они выбираются по достаточно сложным алгоритмам, но для простоты можно представлять себе что эти номера выбираются случайным образом.
На третьем этапе пересылается подтверждение получения предыдущего запроса на установку соединения ACK номер следующего ожидаемого байта 36830, а также номер байта в сообщении. После этого соединение считается установленным и можно передавать данные.
Разрыв соединения в TCP
Соединение в TCP дуплексное — это означает, что после установки соединения передавать данные можно в две стороны. Есть две схемы разрыва соединения. Возможен одновременный разрыв соединения, в этом случае обе стороны разрывают соединение в одно и то же время, либо односторонние, в этом случае одна сторона говорит о том, что данные для передачи у нее закончились, но другая сторона может передавать данные еще достаточно долго.
Протокол TCP предусматривает два варианта разрыва соединения: корректное, с помощью одностороннего разрыва соединения и сообщения FIN и разрыв из-за критической ситуации с помощью сообщения RST.
Рассмотрим, как выполняется корректный разрыв соединения. Сторона, которая хочет разорвать соединение пересылает другой стороне сообщение FIN и в ответ получает сообщение ACK. Однако соединение разорвано только с одной стороны.
Когда другая сторона решила, что данные для передачи у нее закончились, она также передает сообщение FIN в ответ получает сообщение ACK подтверждение. На этом этапе соединение закрыто полностью в обе стороны.
Для разрыва соединения в критической ситуации из-за ошибок в приложении или с оборудованием используется одно сообщение RST. В этом случае соединение закрывается в обе стороны. Хотя сообщение RST предназначено для использования в критических ситуациях, некоторые протоколы используют его для быстрого закрытия соединения.
Назначение TCP
TCP/IP — это средство для обмена информацией между компьютерами, объединенными в сеть. Не имеет значения, составляют ли они часть одной и той же сети или подключены к отдельным сетям. Не играет роли и то, что один из них может быть компьютером Cray, а другой Macintosh. TCP/IP — это не зависящий от платформы стандарт, который перекидывает мосты через пропасть, лежащую между разнородными компьютерами, операционными системами и сетями. Это протокол, который глобально управляет Internet, и в значительной мере благодаря сети TCP/IP завоевал свою популярность.
Основными протоколами стека, давшими ему название, являются протоколы IР и ТСР. Эти протоколы в терминологии модели 051 относятся к сетевому и транспортному уровням соответственно. IР обеспечивает продвижение пакета по составной сети, а ТСР гарантирует надежность его доставки.
Причина, по которой TCP/IP столь важен сегодня, заключается в том, что он позволяет самостоятельным сетям подключаться к Internet или объединяться для создания частных интрасетей. Вычислительные сети, составляющие интрасеть, физически подключаются через устройства, называемые маршрутизаторами или IP-маршрутизаторами.
Маршрутизатор — это компьютер, который передает пакеты данных из одной сети в другую. В интрасети, работающей на основе TCP/IP, информация передается в виде дискретных блоков, называемых IP-пакетами (IP packets) или IP-дейтаграммами (IP datagrams). Благодаря программному обеспечению TCP/IP все компьютеры, подключенные к вычислительной сети, становятся «близкими родственниками». По существу оно скрывает маршрутизаторы и базовую архитектуру сетей и делает так, что все это выглядит как одна большая сеть. Точно так же, как подключения к сети Ethernet распознаются по 48-разрядным идентификаторам Ethernet, подключения к интрасети идентифицируются 32-разрядными IP-адресами, которые мы выражаем в форме десятичных чисел, разделенных точками (например, 128.10.2.3). Взяв IP-адрес удаленного компьютера, компьютер в интрасети или в Internet может отправить данные на него, как будто они составляют часть одной и той же физической сети.
TCP/IP дает решение проблемы данными между двумя компьютерами, подключенными к одной и той же интрасети, но принадлежащими различным физическим сетям. Решение состоит из нескольких частей, причем каждый член семейства протоколов TCP/IP вносит свою лепту в общее дело. IP — самый фундаментальный протокол из комплекта TCP/IP — передает IP-дейтаграммы по интрасети и выполняет важную функцию, называемую маршрутизацией, по сути дела это выбор маршрута, по которому дейтаграмма будет следовать из пункта А в пункт B, и использование маршрутизаторов для «прыжков» между сетями.
Особенности TCP
Поскольку стек ТСР/IР изначально создавался для глобальной сети Internet он имеет много особенностей, дающих ему преимущество перед другими протоколами, когда речь заходит о построении сетей, включающих глобальные связи. В частности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментировать пакеты. Действительно, большая составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть установлена собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека ТСР/IР эффективно решает эту задачу.
Другой особенностью технологии ТСР/IР является гибкая система адресации, позволяющая более просто по сравнению с другими протоколами аналогичного назначения включать в интерсеть сети других технологий. Это свойство также способствует применению стека ТСР/IР для построения больших гетерогенных сетей.
В стеке ТСР/ IР очень экономно используются возможности широковещательных рассылок. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.
Маска подсети
Второй элемент, который требуется для работы TCP/IP, является маской подсети. Маска подсети используется протоколом TCP/IP для определения того, находится ли узел в локальной подсети или в удаленной сети.
В протоколе TCP/IP части IP-адреса, используемые в качестве адресов сети и узла, не фиксируются, поэтому сети и адреса узлов, указанные выше, не могут быть определены, если у вас больше сведений. Эти сведения предоставляются в другом 32-разрядном номере, который называется маской подсети. В этом примере маской подсети является 255.255.255.0. Это значение не очевидно, если вы не знаете, что 255 в двоичной нотации равно 11111111; Таким образом, маска подсети — 11111111.11111111.11111111.0000000.
Выделяйте IP-адрес и маску подсети вместе, можно разделять части сети и узлы адреса:
11000000.10101000.01111011.10000100—IP-адрес (192.168.123.132) 11111111.11111111.11111111.00000000—маска подсети (255.255.255.0)
Первые 24 бита (количество из них в маске подсети) определяются как сетевой адрес с последними 8 битами (количеством оставшихся нулей в маске подсети), идентифицируемым как адрес узла. В результате вы получите следующее:
11000000.10101000.01111011.00000000—сетевой адрес (192.168.123.0) 00000000.00000000.00000000.10000100—адрес узла (000.000.000.132)
Итак, теперь вы знаете, что в этом примере используется маска подсети 255.255.255.0, идентификатор сети — 192.168.123.0, а адрес узла — 0.0.0.132. Когда пакет поступает в под192.168.123.0 подсети (из локальной подсети или удаленной сети), а адрес назначения 192.168.123.132, компьютер будет получать его из сети и обрабатывать.
Почти все маски подсети преобразуются в двоичные числа, расположенные слева и все нули справа. Вот некоторые другие распространенные маски подсети:
Десятичный двоичный 255.255.255.192 1111111.11111111.1111111.11000000 255.255.255.224 1111111.11111111.1111111.11100000
Интернет RFC 1878 (доступна из интернирования общедоступных сведений о службах регистрации доменных имен в Интернете) описание допустимых подсетей и масок подсетей, которые можно использовать в сетях TCP/IP.
Маска подсети
Маска подсети выявляет из IP-адреса подсеть и номер хоста.
Например, IP-адрес имеет маску . В таком случае формат записи будет выглядеть так [192.168.38.2/24]. Число «24» – это количество бит в маске. Восемь бит равняется одному октету, который также может называться байтом.
Если подробнее, то маску подсети можно представить в двоичной системе счисления таким образом: . В ней имеется четыре октета, и запись состоит из «1» и «0». Если сложить количество единиц, то получим в сумме «24». К счастью, считать по единице не обязательно, ведь в одном октете – 8 значений. Видим, что три из них заполнены единицами, складываем и получаем «24».
Если говорить именно о маске подсети, то в двоичном представлении она имеет в одном октете либо единицы, либо нули. При этом последовательность такова, что сначала идут байты с единицами, а только потом с нулями.
Рассмотрим небольшой пример. Есть IP-адрес и маска подсети . Считаем и записываем: [192.168.46.2/24]. Теперь сопоставляем маску с IP-адресом. Те октеты маски, в которых все значения равны единице (255) оставляют соответствующие им октеты в IP-адресе без изменения. Если же в значении нули (0), то октеты в IP-адресе также становятся нулями. Таким образом, в значении адреса подсети получаем .
Сравнение с моделью OSI
Три верхних уровня в модели OSI, то есть уровень приложения, уровень представления и уровень сеанса, отдельно не различаются в модели TCP/IP, которая имеет только прикладной уровень над транспортным уровнем. Хотя некоторые чистые приложения протокола OSI, такие как X.400, также объединяют их, нет требования, чтобы стек протокола TCP/IP должен накладывать монолитную архитектуру над транспортным уровнем. Например, протокол NFS-приложений работает через протокол представления данных External Data Representation (XDR), который, в свою очередь, работает по протоколу Remote Procedure Call (RPC). RPC обеспечивает надежную передачу данных, поэтому он может безопасно использовать транспорт UDP с максимальным усилием.
Различные авторы интерпретировали модель TCP/IP по-разному и не согласны с тем, что уровень связи или вся модель TCP/IP охватывает проблемы первого уровня модели OSI (физический уровень) или предполагается, что аппаратный уровень ниже уровня канала.
Несколько авторов попытались включить слои 1 и 2 модели OSI в модель TCP/IP, поскольку они обычно упоминаются в современных стандартах (например, IEEE и ITU). Это часто приводит к модели с пятью слоями, где уровень связи или уровень доступа к сети разделяются на слои 1 и 2 модели OSI.
Например, считается, что уровни сеанса и представления пакета OSI включены в прикладной уровень пакета TCP/IP. Функциональность уровня сеанса можно найти в протоколах, таких как HTTP и SMTP, и более очевидна в таких протоколах, как Telnet и протокол инициации сеанса (SIP). Функциональность уровня сеанса также реализована с нумерацией портов протоколов TCP и UDP, которые охватывают транспортный уровень в наборе TCP/IP. Функции уровня представления реализуются в приложениях TCP/IP со стандартом MIME при обмене данными.
Конфликты очевидны также в оригинальной модели OSI, ISO 7498, когда не рассматриваются приложения к этой модели, например, ISO 7498/4 Management Framework или ISO 8648 Internal Organization of the Network layer (IONL). Когда рассматриваются документы IONL и Management Framework, ICMP и IGMP определяются как протоколы управления уровнем для сетевого уровня. Аналогичным образом IONL предоставляет структуру для «зависимых от подсетей объектов конвергенции», таких как ARP и RARP.
Протоколы IETF могут быть инкапсулированы рекурсивно, о чем свидетельствуют протоколы туннелирования, такие как Инкапсуляция общей маршрутизации (GRE). GRE использует тот же механизм, который OSI использует для туннелирования на сетевом уровне.
Существуют разногласия в том, как вписать модель TCP/IP в модель OSI, поскольку уровни в этих моделях не совпадают.
К тому же, модель OSI не использует дополнительный уровень — «Internetworking» — между канальным и сетевым уровнями. Примером спорного протокола может быть ARP или STP.
Вот как традиционно протоколы TCP/IP вписываются в модель OSI:
TCP/IP | OSI | ||
7 | Прикладной | Прикладной | напр., HTTP, SMTP, SNMP, FTP, Telnet, SSH, SCP, SMB, NFS, RTSP, BGP |
6 | Представления | напр., XDR, AFP, TLS, SSL | |
5 | Сеансовый | напр., ISO 8327 / CCITT X.225, RPC, NetBIOS, PPTP, L2TP, ASP | |
4 | Транспортный | Транспортный | напр., TCP, UDP, SCTP, SPX, ATP, DCCP, GRE |
3 | Сетевой | Сетевой | напр., IP, ICMP, IGMP, CLNP, OSPF, RIP, IPX, DDP |
2 | Канальный | Канальный | напр., Ethernet, Token ring, HDLC, PPP, X.25, Frame relay, ISDN, ATM, SPB, MPLS, ARP |
1 | Физический | напр., электрические провода, радиосвязь, волоконно-оптические провода, инфракрасное излучение |
Обычно в стеке TCP/IP верхние 3 уровня модели OSI (прикладной, представления и сеансовый) объединяют в один — прикладной. Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению.
Что такое TCP/IP
TCP/IP — это набор протоколов, специальных правил, которые упорядочивают и обеспечивают надежный обмен информацией среди устройств, объединенных в сеть. Это может быть локальная сетка из двух компьютеров, так и глобальная паутина.
Полностью пишется, как, Transmission Control Protocol/Internet Protocol, что в переводе означает — Протокол управления передачи/Интернета.
Позволяет взаимодействовать между собой устройствам, находящимся в разных сетях и с различными операционными системами, например, между Windows, Mac OS, Linux и т.д.
Название данного стека — набора правил сложилось из основных двух:
- Протокол IP — берет на себя задачу по адресации, определяет, где в передаваемых данных: адрес, содержимое.
- Протокол TCP — обеспечивает и контролирует надежную передачу информации и ее целостность.
Также включает в себя и другие, но так, как эти являются базовыми, закрепилось именно такое называние. Как видите, все оказалось довольно просто.
Как работает TCP/IP — принцип работы
У каждого компьютера и ноутбука в сети есть свой уникальный ip адрес. Программы, которые используются на компьютере применяют свой уникальный порт для их идентификации. Порт необходим, чтобы программы различали друг друга, т.к. только по айпи будет не понятно, какой софт запрашивает информацию и куда ее следует отправлять.
Так обмениваются между собой программы по сети:
Программа 1 — отправитель:
IP адрес: 192.168.0.32
Порт: 2054
Программа 2 — получатель:
IP адрес: 192.168.0.34
Порт: 2071
Пересылаемые данные пакета:
— — —
IP — это уникальный адрес компьютера. Порт — это идентификатор приложение установленного на нем. Связка, IP + порт называется — сокет.
Стек протоколов TCP/IP
Стек разделяется на четыре уровня, в каждом из которых свои протоколы. Все они функционируют одновременно, поэтому у каждого есть свои правила, чтобы они работали без перебоев и конфликтов.
1. Прикладной / Для приложений. Это: HTTP, SMTP, DNS, FTP и т.д. Т.е. Веб, почта, передача файлов и прочее.2. Транспортный. Это: TCP, UPD и т.д. Отвечает за связь между компьютерами и за доставку данных.3. Сетевой (межсетевой). IP, IGMP и т.д. Отвечает за адресацию.4. Канальный / Сетевые интерфейсы. Это: Ethernet, Wi-Fi, DSL.
На этом стеке и реализовано все взаимодействие пользователей в IP сетях. Также, существуют и другие стеки: OSI, IPX/SPX, IPX/SPX.
В заключение
Вот вы и узнали, что это такое, постарался объяснить все просто, для «чайников». Следующие материалы также будут посвящены технологии передачи данных в интернете.
Мультиплексирование
Способ объединения двух или более потоков данных в один сеанс называется мультиплексированием. Когда клиент TCP инициализирует соединение с сервером, он всегда ссылается на четко определенный номер порта, который указывает на процесс приложения. Сам клиент использует случайный номер порта из частных пулов номеров портов.
Используя TCP Multiplexing, клиент может взаимодействовать с несколькими различными процессами приложения за один сеанс. Например, клиент запрашивает веб-страницу, которая, в свою очередь, содержит различные типы данных (HTTP, SMTP, FTP и т. Д.), Тайм-аут сеанса TCP увеличивается, и сеанс остается открытым на более длительное время, так что накладные расходы на трехстороннюю рукопожатие могут избегать.
Это позволяет клиентской системе получать несколько соединений по одному виртуальному соединению. Эти виртуальные соединения не подходят для серверов, если тайм-аут слишком длинный.
TCP/IP vs OSI
Модель OSI определяет принципы передачи данных. Уровни стека протоколов TCP/IP прямо соответствуют этой модели. В отличие от четырехуровневого TCP/IP имеет 7 уровней:
- Физический (Physical).
- Канальный (Data Link).
- Сетевой (Network).
- Транспортный (Transport).
- Сеансовый (Session).
- Представительский (Presentation).
- Прикладной (Application).
В данный момент не стоит сильно углубляться в эту модель, но необходимо хотя бы поверхностное понимание.
Прикладной уровень в модели TCP/IP соответствует трем верхним уровням OSI. Все они работают с приложениями, поэтому можно отчетливо проследить логику такого объединения. Такая обобщенная структура стека протоколов TCP/IP способствует облегченному пониманию абстракции.
Транспортный уровень остается без изменений. Выполняет одинаковые функции.
Сетевой уровень также не изменен. Выполняет ровно те же задачи.
Канальный уровень в TCP/IP соответствует двум последним уровням OSI. Канальный уровень устанавливает протоколы передачи данных через физическую среду.
Физический представляет собой собственно физическую связь — провода, кабели, электрические сигналы, коннекторы и т.п. В стеке протоколов TCP/IP было решено объединить эти два уровня в один, так как они оба работают с физической средой.
Что такое IP-адрес
У всех он есть, но не все имеют представление что за адрес такой и почему вообще без него нельзя. Рассказываю.
IP-адрес — 32-х битное число, используемое для идентификации компьютера в сети. Адрес принято записывать десятичными значениями каждого октета этого числа с разделением полученных значений точками. Например, 192.168.101.36
IP-адреса уникальны, — это значит, что каждый компьютер имеет свое собственное сочетание цифр, и в сети не может быть двух компьютеров с одинаковыми адресами. IP-адреса распределяются централизованно, интернет-провайдеры делают заявки в национальные центры в соответствии со своими потребностями. Полученные провайдерами диапазоны адресов распределяются дальше между клиентами. Клиенты, в свою очередь, сами могут выступать в роли провайдера и распределять полученные IP-адреса между субклиентами и т.д. При таком способе распределения IP-адресов компьютерная система точно знает «расположение» компьютера, имеющего уникальный IP-адрес; — ей достаточно переслать данные в сеть «владельца», а провайдер в свою очередь проанализирует пункт назначения и, зная, кому отдана эта часть адресов, отправит информацию следующему владельцу поддиапазона IP-адресов, пока данные не поступят на компьютер назначения.
Для построения же локальных сетей выделены спец.диапазоны адресов. Это адреса 10.x.x.x, 192.168.x.x, 10.x.x.x, c 172.16.x.x по 172.31.x.x, 169.254.x.x, где под x- имеется ввиду любое число это от 0 до 254. Пакеты, передаваемые с указанных адресов, не маршрутизируется, иными словами, попросту не пересылаются через Интернет, а поэтому в различных локальных сетях компьютеры могут иметь совпадающие адреса из указанных диапазонов. Т.е., в компании ООО «Рога и копыта» и ООО «Вася и компания» могут находится два компьютера с адресами 192.168.0.244, но не могут, скажем, с адресами 85.144.213.122, полученными от провайдера интернета, т.к. в интернете не может быть два одинаковых IP-адреса. Для пересылки информации с таких компьютеров в Интернет и обратно используются спец.программы и устройства, которые заменяют локальные адреса реальными при работе с интернетом. Иными словами, данные в Сеть пересылаются с реального IP-адреса, а не с локального. Этот процесс происходит не заметно для пользователя и называется трансляцией адресов. Хочется так же упомянуть, что в рамках одной сети, скажем, компании, ООО «Рога и копыта», не может быть два компьютера с одним локальным IP-адресом, т.е., в указанном выше примере имелось ввиду, что один компьютер с адресом 192.168.0.244 в одной компании, второй с таким же адресом — в другой. В одной же компании два компьютера с адресом 192.168.0.244 попросту не уживутся.
Вы наверняка слышали такие термины как внешний IP и внутренний IP, постоянный (статический IP) и переменный (динамический) IP. В двух словах о них:
- внешний IP — это как раз тот самый IP, который выдает Вам провайдер, т.е. Ваш уникальный адрес в интернете, например, — 85.144.24.122
- внутренний IP, — это локальный IP, т.е. Ваш IP в локальной сети, например, — 192.168.1.3
- статический IP — это IP, который не меняется с каждым подключением, т.е. закреплен за Вами твердо и навсегда
- динамический IP, — это плавающий IP-адрес, который меняется с каждым подключением
Тип Вашего IP (статический или динамический) зависит от настроек провайдера.
Подсети
Сеть A, B или C с классом A, B или C можно дополнительно разделить (подгрузку) системным администратором. Это становится необходимым при согласовании логической адресной схемы Интернета (абстрактного мира IP-адресов и подсетей) с физическими сетями, используемыми в реальной среде.
Системный администратор, которому размещается блок IP-адресов, может администрировать сети, которые не будут легко распосутствовать в этих адресах. Например, у вас есть глобальная сеть с 150 узлами в трех сетях (в разных городах), подключенных маршрутизатором TCP/IP. У каждой из этих трех сетей есть 50 узлов. Вы выделили 192.168.123.0 для сети класса C. (Для иллюстрации этот адрес фактически относится к диапазону, который не выделен в Интернете.) Это означает, что вы можете использовать адреса 192.168.123.1 для 192.168.123.254 для узлов 150.
Два адреса, которые не могут использоваться в вашем примере, — 192.168.123.0 и 192.168.123.255, так как двоичные адреса с ведущим сегментом всех и нулей являются недопустимыми. Нулевой адрес является недопустимым, так как он используется для указания сети без указания узла. Адрес 255 (в двоичном формате с адресом узла все) используется для рассылки сообщения на каждый узел в сети. Просто помните, что первый и последний адреса в любой сети или подсети не могут быть назначены какому бы то ни было отдельному узлу.
Теперь вы можете предоставить IP-адреса узлам 254. Это хорошо, если все компьютеры 150 находятся в одной сети. Тем не менее, компьютеры 150 находятся в трех отдельных физических сетях. Вместо того чтобы запрашивать дополнительные блоки адресов для каждой сети, вы разделяете сеть на подсети, позволяющие использовать один блок адресов в нескольких физических сетях.
В этом случае сеть разделяется на четыре подсети, используя маску подсети, которая увеличивает сетевой адрес и уменьшает возможный диапазон адресов узлов. Другими словами, вы позаимствованы некоторые биты, используемые для адреса узла, и используете их для части адреса в сети. Маска подсети 255.255.255.192 предоставляет четыре сети для каждого сервера 62. Это работает, так как в двоичной нотации 255.255.255.192 — то же самое, что и 1111111.11111111.1111111.11000000. Первые две цифры последнего октета становятся сетевыми адресами, поэтому вы получаете дополнительные сети 00000000 (0), 01000000 (64), 10000000 (128) и 11000000 (192). (Некоторые администраторы будут использовать только две подсети с помощью 255.255.255.192 в качестве маски подсети. Для получения дополнительной информации по этой теме, ознакомьтесь со статьей RFC 1878.) В этих четырех сетях последние 6 двоичных цифр можно использовать для адресов узла.
Используя маску подсети 255.255.255.192, сеть 192.168.123.0 становится четырьмя сетями 192.168.123.0, 192.168.123.64, 192.168.123.128 и 192.168.123.192. Эти четыре сети будут иметь допустимые адреса узла:
192.168.123.1 — 62 192.168.123.65 – 126 192.168.123.129 – 190 192.168.123.193 – 254
Помните, что двоичные адреса узла со всеми или нулевыми нулями недопустимы, поэтому нельзя использовать адреса с последним октетом 0, 63, 64, 127, 128, 191, 192 или 255.
Вы можете узнать, как это работает, взглянув на два адреса узла, 192.168.123.71 и 192.168.123.133. Если вы использовали маску подсети класса C по умолчанию 255.255.255.0, оба адреса находятся в сети 192.168.123.0. Тем не менее, если вы используете маску подсети 255.255.255.192, они находятся в разных сетях; 192.168.123.71 находится в сети 192.168.123.64, 192.168.123.133 находится в сети 192.168.123.128.