Динамические массивы в java

Драйвер.

Мало соединить провода в определенной последовательности. Ваш компьютер может просто «не увидеть» подключенное устройство. Особенно, если модель принтера значительно «моложе» установленной на компьютере операционной системы. Как правило, к принтеру прилагается компакт-диск. На этом диске записана вспомогательная программа – драйвер, которая поможет принтеру и компьютеру «познакомиться поближе».

Итак, открываем дисковод, вставляем вышеуказанный диск и следуем подсказкам системы, подтверждая все пункты, того требующие. По завершении установки система сообщит вам, что драйвер установлен, т.е. она готова к «адекватному восприятию» нового устройства.

В редких случаях диска с необходимым драйвером в комплекте нет. Диска нет, но выход из ситуации есть. Заходим на сайт производителя данного принтера и скачиваем драйвер уже оттуда.

Declaring Array Variables

To use an array in a program, you must declare a variable to reference the array, and you must specify the type of array the variable can reference. Here is the syntax for declaring an array variable −

Syntax

dataType[] arrayRefVar;   // preferred way.
or
dataType arrayRefVar[];  // works but not preferred way.

Note − The style dataType[] arrayRefVar is preferred. The style dataType arrayRefVar[] comes from the C/C++ language and was adopted in Java to accommodate C/C++ programmers.

Example

The following code snippets are examples of this syntax −

double[] myList;   // preferred way.
or
double myList[];   // works but not preferred way.

Поиск с помощью Arrays.binarySearch()

Класс Arrays содержит набор методов с именем binarySearch(). Этот метод поможет вам выполнить бинарный поиск в массиве. Сначала массив должен быть отсортирован. Вы можете сделать это самостоятельно или с помощью метода Arrays.sort(), описанного ранее в этом тексте. Вот пример:

int[] ints = {0,2,4,6,8,10};

int index = Arrays.binarySearch(ints, 6);

System.out.println(index);

Вторая строка этого примера ищет в массиве значение 6. Метод binarySearch() возвращает индекс в массиве, в котором был найден элемент. В приведенном выше примере метод binarySearch() вернет 3.

Если в массиве существует более одного элемента с искомым значением, нет гарантии, какой элемент будет найден.

Если элемент с данным значением не найден, будет возвращено отрицательное число. Отрицательным числом будет индекс, по которому будет вставлен искомый элемент, а затем минус один. Посмотрите на этот пример:

int[] ints = {0,2,4,6,8,10};

int index = Arrays.binarySearch(ints, 7);

System.out.println(index);

Число 7 не найдено в массиве. Номер 7 должен был быть вставлен в массив по индексу 4, если 7 должен был быть вставлен в массив (и порядок сортировки сохранен). Следовательно, binarySearch() возвращает -4 — 1 = -5.

Если все элементы в массиве меньше искомого значения, то двоичная Search() вернет — длина массива — 1. Посмотрите на этот пример:

int[] ints = {0,2,4,6,8,10};

int index = Arrays.binarySearch(ints, 12);

System.out.println(index);

В этом примере мы ищем 12 в массиве, но все элементы в массиве меньше 12. Поэтому binarySearch() вернет -length(-6) — 1 = -6 -1 = -7.

Метод Arrays.binarySearch() для поиска части массива. Вот как это выглядит:

int[] ints = {0,2,4,6,8,10};

int index = Arrays.binarySearch(ints, 0, 4, 2);

System.out.println(index);

В этом примере выполняется поиск в массиве значения 2, но только между индексами 0 и 4 (без 4).

Эта версия binarySearch() работает так же, как и другая версия, за исключением случаев:

  • Если не найдено ни одного элемента, совпадающего в пределах интервала индекса, то все равно вернется индекс того места, где должно было быть вставлено значение.
  • Если все значения в интервале меньше искомого значения, вернется -toIndex -1, а не -array length — 1.

Таким образом, этот пример:

int[] ints = {0,2,4,6,8,10};

int index = Arrays.binarySearch(ints, 0, 4, 12);

вернет -5, а не -7, как в двоичном поиске (целых, 12).

1 Класс ArrayList

Сегодня мы изучим класс . Это первый класс из так называемых коллекций. Коллекции в Java — настолько обширная и полезная вещь, что ей посвящен целый квест на JavaRush.

Чтобы полностью понять, как устроены коллекции и все нюансы их работы, нужно сначала изучить ООП, интерфейсы, наследование, азы многопоточности и многое другое.

Поэтому сегодня мы просто познакомимся с самой простой коллекцией. Зато на достаточно глубоком уровне, чтобы вы понимали, как ей пользоваться и как она работает. Итак, встречайте: коллекция .

Предыстория

Начну с небольшой предыстории. Программистам очень не нравилось одно свойство массива — его размер нельзя изменять. Что делать, если нужно сохранить в массиве ещё три элемента, а свободное место только одно?

Единственным решением проблемы нехватки места в массиве было создание массива очень большого размера, чтобы все элементы туда точно поместились. Но это часто приводило к нерациональному расходу памяти. Если обычно в массиве хранилось два-три элемента, но был хотя бы мизерный шанс, что там их будет 100, приходилось создавать массив на 100 элементов.

И что же придумали программисты? Они написали класс (массив-список), который выполнял ту же работу, что и (массив), но мог изменять свой размер.

Класс ArrayList

Само название происходит из двух слов: Array + List. — это массив, а — список.

Внутри каждого объекта типа хранится обычный массив элементов. Когда вы считываете элементы из , он считывает их со своего внутреннего массива. Когда записываете — записывает их во внутренний массив.

У класса ArrayList отсутствуют все недостатки, которые есть у массивов. Он умеет:

  • Хранить элементы определенного типа
  • Динамически менять размер списка
  • Добавлять элементы в конец списка
  • Вставлять элементы в начало и середину списка
  • Удалять элементы из любого места списка

Подробнее — ниже:

14 ответов

Прежде всего, является свойством, поэтому это будет вместо .

И он вернет 10, заявленный размер. Элементы, которые вы не объявляете явно, инициализируются с 0.

Чтобы узнать длину массива , используйте свойство. Это как , не используйте в основном используется для размера объектов, связанных со строками.

Свойство length всегда показывает общее выделенное пространство для массива во время инициализации.

Если у вас возникнут какие-либо проблемы подобного рода, просто запустите их. Удачного программирования!

Массивы — это статическое распределение памяти, поэтому, если вы инициализируете массив целых чисел:

Длина будет всегда 15, независимо от того, сколько индексов заполнено.

И еще одна вещь, когда вы инициализируете массив целых чисел, все индексы будут заполнены «0».

В этом случае arr.length вернет 10, размер выделенного вами массива. Логический размер здесь не применим, так как это массив фиксированной длины.

Когда вы инициализируете массив:

Java создаст массив из 10 элементов и инициализирует все из них до 0. См. для получения подробных сведений о начальных значениях для этого и других примитивных типов.

В Java ваш «фактический» и «логический» размер совпадают. Во время выполнения все слоты массива заполняются значениями по умолчанию при выделении. Итак, ваш содержит 10.

`

Итак, мы создали массив с объемом памяти 3 …
вот как это выглядит на самом деле

0й 1й 2й ………..> Индекс
2 4 5 ………..> Число

Итак, как вы видите, размер этого массива равен 3, но индекс массива — только до 2, поскольку любой массив начинается с 0-го индекса.

второй оператор ‘output должен быть равен 3, поскольку длина массива равна 3 … Пожалуйста, не путайте значение индекса с длиной массива ….

ура!

Он будет содержать фактический размер массива, так как это то, что вы инициализировали массив, когда он был объявлен. В Java нет понятия «логического» размера массива, поскольку в этом случае значение по умолчанию 0 так же логично, как и значения, которые вы установили вручную.

Он содержит выделенный размер, 10. Остальные индексы будут содержать значение по умолчанию, равное 0.

Если вам нужен логический размер массива, вы можете просмотреть все значения в массиве и проверить их на ноль. Увеличьте значение, если оно не равно нулю, и это будет логический размер. Поскольку размер массива фиксирован, у вас нет встроенного метода, возможно, вам стоит взглянуть на коллекции.

Должно быть:

Скобки следует избегать.

Java-массивы на самом деле имеют фиксированный размер, а другие ответы объясняют, что .length на самом деле не делает то, что вы ожидаете. Я просто хотел бы добавить, что с учетом вашего вопроса вы, возможно, захотите использовать ArrayList, массив, который может увеличиваться и уменьшаться:

Здесь метод .size () покажет вам количество элементов в вашем списке, и вы можете увеличивать его по мере добавления.

если вы подразумеваете под «логическим размером» индекс массива, то просто
    int arrayLength = arr.length-1;
поскольку индекс массива начинается с «0», то логический или «индекс массива» всегда будет меньше фактического размера на «один».

является типом массив с размером . Это массив элементов .
Если мы не инициализируем массив по умолчанию, элементы массива содержат значение по умолчанию. В случае массива int по умолчанию используется значение .

length — это свойство, которое применимо для массива.
здесь даст .

Обработка элементов массива

Существует несколько стандартных алгоритмов
обработки элементов массива:

  1. Удаление значения из массива по
    определенному индексу.

  2. Вставка значения в массив по
    определенному индексу.

  3. Сортировка элементов массива.

Начнем с первого
– удаления элемента из массива. Создадим вот такой массив:

final int N = 9;
short a = new shortN;

запишем туда
значения с 1 по 9:

for(int i=;i < N;++i) ai = (short)(i+1);

Теперь удалим
элемент со значением 6. Для этого нужно проделать такую операцию:

Причем, сначала
перемещаем 7-ку на место 6-ку, затем 8-ку и 9-ку, то есть, двигаемся от
удаляемого элемента к концу массива. Программа будет выглядеть так:

final int N = 9;
short a = new shortN;
 
for(int i=;i < N;++i) ai = (short)(i+1);
 
for (int i = 5; i < N-1; ++i)
    ai = ai + 1;
 
for (short val  a) System.out.print(val+" ");

Здесь мы начали
движение с 5-го индекса (то есть 6-го элемента массива) и на первой итерации
делаем операцию a=a, то есть, 7-ку ставим на место 6-ки.
На следующей итерации уже имеем a=a – перемещаем
8-ку и, затем, a=a – перемещаем 9-ку. Все, в итоге
значение 6 было удалено из массива.

Теперь реализуем второй алгоритм и
вставим значение 4, которого не хватает вот в таком массиве:

short a = new short {1, 2, 3, 5, 6, 7, 8, 9, 9};

Здесь в конце записаны две 9, чтобы мы
могли сдвинуть все элементы на 1 вправо и вставить элемент со значением 4. То
есть, нам следует выполнить такую операцию над элементами массива:

Обратите
внимание, что сдвиг осуществляется с конца массива. Если мы начнем это делать с
4-го, то просто затрем все остальные значения пятеркой

Итак, вот программа,
которая вставляет 4-ку в этот массив:

short a = new short {1, 2, 3, 5, 6, 7, 8, 9, 9};
 
for (int i = 8; i > 3; --i)
 
    ai = ai - 1;
 
a3 = 4;
 
for (short val  a) System.out.print(val+" ");

Здесь счетчик i в цикле сначала
равен 8 – это индекс последнего элемента нашего массива. Затем, делается
операция a=a, то есть, a=a. Таким
образом, мы присваиваем 8-му элементу значение 7-го элемента. Это и есть
смещение значения вправо. На следующей итерации i уменьшается на
1, то есть, равно 7 и операция повторяется: a=a и так далее,
последний смещаемый элемент будет: a=a. После этого
i будет равно 3,
условие цикла становится ложным и он завершается. После смещения, мы
присваиваем 4-му элементу массива значение 4 и выводим получившийся массив на
экран.

Теперь
рассмотрим довольно распространенный алгоритм сортировки элементов массива по
методу всплывающего пузырька. Реализуем его на языке Java.

byte a = {3, 5, 1, 6, 2, 4};
 
for (int i = ; i < a.length-1; ++i) {
    byte min = ai;
    int pos = i;
 
    for (int j = i + 1; j < a.length; ++j)
        if (min > aj) {
            pos = j;
            min = aj;
        }
 
    byte t = ai;
    ai = apos;
    apos = t;
}
 
for (short val  a) System.out.print(val+" ");

Здесь первый
цикл показывает с какого элемента искать минимальный, то есть, это
местоположение той вертикальной черты в методе всплывающего пузырька. Затем,
задаем две вспомогательные переменные min – минимальное найденное
значение, pos – индекс
минимального элемента в массиве. Второй вложенный цикл перебирает все
последующие элементы массива и сравнивает его с текущим минимальным и если
будет найдено меньшее значение, то min становится
равной ему и запоминается его позиция. Вот эти три строчки меняют местами
текущее значение элемента с найденным минимальным, используя вспомогательную
переменную t. И в конце
программы выполняется вывод элементов массива на экран.

Запустим эту
программу и посмотрим как она работает. Кстати, если мы теперь хотим выполнить
сортировку по убыванию, то достаточно изменить вот этот знак на
противоположный.

Видео по теме

#1 Установка пакетов и первый запуск программы

#2 Структура программы, переменные, константы, оператор присваивания

#3 Консольный ввод/вывод, импорт пакетов

#4 Арифметические операции

#5 Условные операторы if и switch

#6 Операторы циклов while, for, do while

#7 Массивы, обработка элементов массива

#8 (часть 1) Строки в Java, методы класса String

#8 (часть 2) Строки — классы StringBuffer и StringBuider

#9 Битовые операции И, ИЛИ, НЕ, XOR

#10 Методы, их перегрузка и рекурсия

Сортировка объектов

Показанный ранее пример Arrays.sort() работает только для массивов примитивных типов данных, которые имеют порядок:

  • естественный;
  • числовой;
  • символьный в таблице ASCII (двоичное число, представляющее символ).

У объектов может не быть естественного порядка сортировки, поэтому вам нужно предоставить другой объект, который может определять порядок ваших объектов. Такой объект называется компаратором — это интерфейс.

Вот первый класс для объектов, которые мы хотим отсортировать:

private static class Employee{
    public String name;
    public int    employeeId;

    public Employee(String name, int employeeId){
        this.name       = name;
        this.employeeId = employeeId;
    }
}

Класс Employee — это простая модель сотрудника, у которого есть имя и идентификатор. Вы можете отсортировать массив объектов Employee по имени или по идентификатору сотрудника.

Вот первый пример сортировки массива объектов Employee по их имени с помощью метода Arrays.sort():

Employee[] employeeArray = new Employee;

employeeArray = new Employee("Xander", 1);
employeeArray = new Employee("John"  , 3);
employeeArray = new Employee("Anna"  , 2);

java.util.Arrays.sort(employeeArray, new Comparator() {
    @Override
    public int compare(Employee e1, Employee e2) {
        return e1.name.compareTo(e2.name);
    }
});


for(int i=0; i < employeeArray.length; i++) {
    System.out.println(employeeArray.name);
}
  1. Сначала объявляется массив.
  2. Три объекта Employee создаются и вставляются в массив.
  3. Метод Arrays.sort() вызывается для сортировки массива. В качестве параметра передаем массив employee и реализацию Comparator, которая может определять порядок объектов Employee. Это создает анонимную реализацию интерфейса Comparator.

В примере важно уловить реализацию метода compare() анонимной внутренней реализации интерфейса Comparator. Этот метод возвращает:

  • положительное число, если первый объект «больше»(позже в порядке сортировки), чем второй объект;
  • 0 — они «равны»(в порядке сортировки);
  • отрицательное число, если первый объект «меньше» (ранее в порядке сортировки), чем второй объект.

В приведенном выше примере мы просто вызываем метод String.compare(), который выполняет для нас сравнение (сравнивает имена сотрудников).

После сортировки массива мы перебираем его и выводим имена сотрудников. Вывод:

Anna
John
Xander

Обратите внимание, как порядок был изменен по сравнению с порядком, в котором они были первоначально вставлены в массив. Сортировка объектов Employee по их идентификатору сотрудника на основании предыдущего примера с измененной реализацией метода compare() анонимной реализации интерфейса Comparator:

Сортировка объектов Employee по их идентификатору сотрудника на основании предыдущего примера с измененной реализацией метода compare() анонимной реализации интерфейса Comparator:

Employee[] employeeArray = new Employee;

employeeArray = new Employee("Xander", 1);
employeeArray = new Employee("John"  , 3);
employeeArray = new Employee("Anna"  , 2);

java.util.Arrays.sort(employeeArray, new Comparator() {
    @Override
    public int compare(Employee e1, Employee e2) {
        return e1.employeeId - e2.employeeId;
    }
});

for(int i=0; i < employeeArray.length; i++) {
    System.out.println(employeeArray.name);
}

Вывод:

Xander
Anna
John

Чтобы сравнить объекты Employee в массиве сначала по их имени, а если оно совпадает, то по их идентификатору сотрудника, реализация compare():

java.util.Arrays.sort(employeeArray, new Comparator() {
    @Override
    public int compare(Employee e1, Employee e2) {
        int nameDiff = e1.name.compareTo(e2.name);
        if(nameDiff != 0) { return nameDiff; }
    
        return e1.employeeId - e2.employeeId;
    }
});

2 Создание массива элементов в Java

Допустим, вашей программе нужно где-то хранить целых чисел. Скорее всего, для этого подошел бы массив. И как же его создать?

Если бы мы хотели хранить одно целое число, нам бы подошел тип , ну а если мы хотим хранить целых чисел, вероятно, нам нужен массив типа . Вот как будет выглядеть код по его созданию:

Давайте разберемся, что тут написано.

Как вы уже возможно догадались, слева от знака равенства у нас находится объявление переменной по имени и типа . После типа следуют квадратные скобки, которые как бы намекают, что в «коробках» этого типа можно будет хранить не одно значение, а несколько.

Справа от знака равенства у нас написано «создание объекта» (слово ) на элементов (ячеек) типа int. Тоже не слишком сложно.

Если бы мы хотели, например, создать массив на 20 ячеек для хранения вещественных чисел, код его создания выглядел бы примерно так:

Количество ячеек в массиве называют размером массива или длиной массива. А из-за способности хранить много значений массивы еще называют контейнерами.

Важный факт: размер контейнера массива нельзя изменить после создания.

Можно создать новый, но длину уже созданного контейнера поменять нельзя.

Копирование

Возможно несколькими способами.

Копирование массива путем итерации массива

Первый способ — это перебрать массив и скопировать каждое значение исходного массива в целевой массив. Вот как выглядит копирование массива с использованием этого метода:

int[] source = new int;
int[] dest   = new int;

for(int i=0; i < source.length; i++) {
    source = i;
}

for(int i=0; i < source.length; i++) {
    dest = source;
}

Первые два массива int созданы. Во-вторых, исходный массив инициализируется значениями от 0 до 9 (от 0 до длины массива минус 1). В-третьих, каждый элемент в исходном массиве копируется в целевой массив.

Копирование с помощью Arrays.copyOf()

Вот как выглядит копирование массива:

int[] source = new int;

for(int i=0; i < source.length; i++) {
    source = i;
}

int[] dest = Arrays.copyOf(source, source.length);

Метод Arrays.copyOf() принимает 2 параметра. Первый — это массив для копирования. Второй — это длина нового массива — можно использовать для указания количества копируемых элементов из исходного массива.

Копирование с использованием Arrays.copyOfRange()

Метод Arrays.copyOfRange() копирует диапазон массива, не обязательно полный массив. Процесс копирования с ним:

int[] source = new int;

for(int i=0; i < source.length; i++) {
    source = i;
}

int[] dest = Arrays.copyOfRange(source, 0, source.length);

Метод Arrays.copyOfRange() принимает 3 параметра. Первый — это массив для копирования. Второй  — это первый индекс в исходном массиве, который нужно включить в копию. Третий  — это последний индекс в исходном массиве, который будет включен в копию (исключено — поэтому передача 10 будет копировать до и включая индекс 9).

4 Резюмируем факты о массивах в Java

Давайте резюмируем известные факты о массивах:

Факт 1. Массив состоит из множества ячеек.

Факт 2. Доступ к конкретной ячейке идёт через указание её номера.

Факт 3. Все ячейки одного типа.

Факт 4. Начальное значение для всех ячеек — 0 и (если в ячейке хранится адрес), (для типа ). Подробнее о значениях по умолчанию вы узнаете в этой лекции.

Факт 5. – это просто объявление переменной: сам контейнер(объект-массив) еще не создан. Чтобы с ним можно было работать, нужно создать массив (контейнер) и положить его в эту переменную, а потом уже им пользоваться. См. пример ниже.

Факт 6. Когда мы создаём объект-массив (контейнер), нужно указать, какой он длины — сколько в нем ячеек. Это делается командой вида: ;

Факт 7. Длину массива можно узнать через свойство .

Факт 8. После создания массива нельзя поменять ни тип его элементов, ни их количество.

Код Пояснение
равно равно
Переменная хранит ссылку на объект – массив строк из элементов. равно

Теперь содержит массив из элементов. Массив есть, но хранить элементы он не может.

Будет сгенерировано исключение (ошибка программы) — программа аварийно завершится. содержит пустую ссылку —
Будет сгенерировано исключение (ошибка программы) — выход за границы массива.
Если содержит элементов/ячеек, то их разрешённые индексы: — всего штук.

Как создать массив в Java

При объявлении массива создается только ссылка на массив. Чтобы фактически создать или предоставить память массиву, надо создать массив следующим образом: общая форма new применительно к одномерным и выглядит следующим образом:

Здесь type указывает тип данных, size — количество элементов в массиве, а var-name-имя переменной массива.

Пример:

int intArray[];    //объявление
intArray = new int;  // выделение памяти 

или

int[] intArray = new int; // объединение

Литералы массива

В ситуации, когда размер массива и переменные уже известны, можно использовать литералы.

int[] intArray = new int[]{ 1,2,3,4,5,6,7,8,9,10 }; 
 // Declaring array literal
  • Длина этого массива определяет длину созданного массива.
  • Нет необходимости писать int[] в последних версиях Java

Доступ к элементам массива Java с помощью цикла for

Доступ к каждому элементу массива осуществляется через его индекс. Индекс начинается с 0 и заканчивается на (общий размер)-1. Все элементы могут быть доступны с помощью цикла for.

// accessing the elements of the specified array
for (int i = 0; i < arr.length; i++)
  System.out.println("Element at index " + i + 
                                " : "+ arr);

// Пример для иллюстрации создания array // целых чисел, помещает некоторые значения в массив, // и выводит каждое значение.

class GFG { public static void main (String[] args) { // declares an Array of integers. int[] arr;

// allocating memory for 5 integers. arr = new int;

// initialize the first elements of the array arr = 10;

// initialize the second elements of the array arr = 20;

//so on… arr = 30; arr = 40; arr = 50;

// accessing the elements of the specified array for (int i = 0; i < arr.length; i++) System.out.println(«Element at index » + i + » : «+ arr); } } В итоге получаем:

Element at index 0 : 10
Element at index 1 : 20
Element at index 2 : 30
Element at index 3 : 40
Element at index 4 : 50

Как установить драйвер принтера автоматически

Решение проблемы в ручном порядке отложим до следующих разделов. Прежде нужно задействовать автоматический процесс обновления – эта интегрированная функция производит поиск, установку и настройку драйверов.

  • Перейдите в «Панель управления» из Пуск;
  • Выберите плитку «Устройства и принтеры»;

Теперь на иконке, где изображен компьютер произведите правый клик и увидите Windows Update;

Далее в новом окне запустите обновление и ожидайте его окончания.

Удобство использования метода заключается в автоматизации процесса поиска и установки устройств. Никаких ручных манипуляций не требуется, поэтому попробуйте данный вариант в первую очередь.

По идее сразу после подключения принтера, компьютер пытается найти необходимые драйвера, но так как вы все еще читаете статью, видимо Windows не смогла определить устройство. Мы поможем вам в решении данного вопроса.

Arrays and Helper Classes

Before proceeding, it’s useful to understand what is an array in Java, and how to use it. If it’s your first time working with it in Java, we suggest having a look at this previous post where we covered all basic concepts.

Please note that the basic operations that an array supports are, in a certain way, limited. It’s not uncommon to see complex algorithms to execute relatively simple tasks when it comes to arrays.

For this reason, for most of our operations, we’ll be using helper classes and methods to assist us: the Arrays class provided by Java and the Apache’s ArrayUtils one.

To include the latter in our project, we’ll have to add the Apache Commons dependency:

We can check out the latest version of this artifact .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector