Функция input() в python, ввод данных с клавиатура

Содержание:

Целые числа (int)

В Python любое число, состоящее из десятичных цифр без префикса, интерпретируется как десятичное число типа

Целые числа в Python представлены только одним типом – PyLongObject, реализация которого лежит в longobject.c, а сама структура выглядит так:

Любое целое число состоит из массива цифр переменной длины, поэтому в Python 3 в переменную типа может быть записано число неограниченной длины. Единственное ограничение длины – это размер оперативной памяти.

Целые числа могут записываться не только как десятичные, но и как двоичные, восьмеричные или шестнадцатеричные. Для этого перед числом нужно написать символы:

  • 0b (0B) – для двоичного представления;
  • 0o (0O) – для восьмеричного представления;
  • 0x (0X) – для шестнадцатеричного представления.

Позволяет производить ввод данных в консоли.

Описание:

Функция позволяет обеспечить ввод пользовательских данных из консоли. Если передан необязательный аргумент подсказки , то он записывается в стандартный вывод без завершающей строки. Затем функция читает строку из ввода и преобразует ее в СТРОКУ, убирая завершающий символ строки и возвращает ее в качестве значения.

Другими словами, все что вводится в консоль при использовании встроенной функции преобразуется в тип . Это происходит в том числе и с числами. Следовательно, числовые данные, перед их использованием необходимо распознавать и преобразовывать к нужным типам.

Если был импортирован модуль , то функция будет использовать его для обеспечения сложных функций редактирования строк и истории.

  • В случае считывания (признак конца файла), поднимается исключение .
  • Перед чтением ввода, функция вызывает событие аудита с аргументом .
  • После успешного чтения ввода, вызывает событие аудита c результатом .

Целые и числа с плавающей точкой в Python

В программирование целые числа — это те, что лишены плавающей точкой, например, 1, 10, -1, 0 и так далее. Числа с плавающей точкой — это, например, 1.0, 6.1 и так далее.

Создание int и float чисел

Для создания целого числа нужно присвоить соответствующее значение переменной. Возьмем в качестве примера следующий код:

Здесь мы присваиваем значение переменной

Важно не использовать одинарные или двойные кавычки при создании чисел, поскольку они отвечают за представление строк. Рассмотрим следующий код

Копировать

В этих случаях данные представлены как строки, поэтому не могут быть обработаны так, как требуется. Для создания числа с плавающей точкой, типа , нужно аналогичным образом присвоить значение переменной.

Здесь также не стоит использовать кавычки.

Проверить тип данных переменной можно с помощью встроенной функции . Можете проверить результат выполнения, скопировав этот код в свою IDE.

Копировать

Вывод:

В Python также можно создавать крупные числа, но в таком случае нельзя использовать запятые.

Копировать

Если попытаться запустить этот код, то интерпретатор Python вернет ошибку. Для разделения значений целого числа используется нижнее подчеркивание. Вот пример корректного объявления.

Копировать

Значение выведем с помощью функции :

Арифметические операции над целыми и числами с плавающей точкой

Используем такие арифметические операции, как сложение и вычитание, на числах. Для запуска этого кода откройте , введите или . Терминал должен выглядеть следующим образом:

Сложение

В Python сложение выполняется с помощью оператора . В терминале Python выполните следующее.

Результатом будет сумма двух чисел, которая выведется в терминале.

Теперь запустим такой код.

В нем было выполнено сложение целого и числа с плавающей точкой

Можно обратить внимание на то, что результатом также является число с плавающей точкой. Таким образом сложение двух целых чисел дает целое число, но если хотя бы один из операндов является числом с плавающей точкой, то и результат станет такого же типа

Вычитание

В Python для операции вычитания используется оператор -. Рассмотрим примеры.

Положительные числа получаются в случае вычитания маленького числа из более крупного. Если же из маленького наоборот вычесть большое, то результатом будет отрицательно число. По аналогии с операцией сложения при вычитании если один из операндов является числом с плавающей точкой, то и весь результат будет такого типа.

Умножение

Для умножения в .

Если перемножить два целых числа, то результатом будет целое число. Если же использовать число с плавающей точкой, то результатом будет также число с плавающей точкой.

Деление

В Python деление выполняется с помощью оператора .

В отличие от трех предыдущих операций при делении результатом всегда будет число с плавающей точкой. Также нужно помнить о том, что на 0 делить нельзя, иначе Python вернет ошибку . Вот пример такого поведения.

Деление без остатка

При обычном делении с использованием оператора результатом будет точное число с плавающей точкой. Но иногда достаточно получить лишь целую часть операции. Для этого есть операции интегрального деления. Стоит рассмотреть ее на примере.

Результатом такой операции становится частное. Остаток же можно получить с помощью модуля, о котором речь пойдет дальше.

Остаток от деления

Для получения остатка деления двух чисел используется оператор деления по модулю .

На этих примерах видно, как это работает.

Копирование

  • Определяет поведение для экземпляра вашего класса. возвращает поверхностную копию вашего объекта — это означает, что хоть сам объект и создан заново, все его данные ссылаются на данные оригинального объекта. И при изменении данных нового объекта, изменения будут происходить и в оригинальном.

  • Определяет поведение для экземпляров вашего класса. возвращает глубокую копию вашего объекта — копируются и объект и его данные. это кэш предыдущих скопированных объектов, он предназначен для оптимизации копирования и предотвращения бесконечной рекурсии, когда копируются рекурсивные структуры данных. Когда вы хотите полностью скопировать какой-нибудь конкретный атрибут, вызовите на нём с первым параметром .

Файл

Работа с файлами, хранящимися где-то на внешнем носителе, в Python реализована в виде объектов-файлов. Они относятся к объектам базового типа, но обладают весьма характерной чертой: нельзя создать экземпляр объекта-файла при помощи литералов.

Чтобы начать работу с файлами, нужно вызвать функцию и передать ей в качестве аргументов имя файла из внешнего источника и строку, описывающую режим работы функции:

Операции с файлами могут быть разными, а, следовательно, разными могут быть и режимы работы с ними:

  • – выбирается по умолчанию, означает открытие файла для чтения;
  • – файл открывается для записи (если не существует, то создаётся новый);
  • – файл открывается для записи (если не существует, то генерируется исключение);
  • – режим записи, при котором информация добавляется в конец файла, а не затирает уже имеющуюся;
  • – открытие файла в двоичном режиме;
  • – ещё одно значение по умолчанию, означающее открытие файла в текстовом режиме;
  • – читаем и записываем.

Преобразование строк

Строка – это последовательность из одного или больше символов (цифр, букв и других символов). Строки – очень распространённый тип данных в программировании. Существует много способов преобразования строк.

Преобразование чисел в строки

Чтобы конвертировать число в строку, используйте метод str(). Поместите число или переменную в круглые скобки.

Попробуйте преобразовать целое число, например:

Запустив метод str(12) в интерактивной оболочке Python (с помощью команды python), вы получите вывод:

Кавычки означают, что теперь 12 является строкой, а не числом.

Особенно полезно преобразовывать числа в строки, используя переменные. К примеру, можно отследить, сколько строк кода  в день пишет тот или иной пользователь. Если пользователь пишет больше 50 строк, программа отправит ему поощрительное сообщение.

Запустив этот код, вы получите ошибку:

Python не может склеивать строки с числами, потому нужно преобразовать значение lines в строку.

Теперь, запустив код, вы увидите:

Метод str() может преобразовать в строку и число с плавающей точкой. Поместите в круглые скобки число или переменную:

Попробуйте выполнить конкатенацию строки и преобразованного в строку числа:

Преобразование строк в числа

Строки можно преобразовать в числа с помощью методов int() и float()

Если в строке нет десятичных знаков, лучше преобразовать её в целое число. Для этого используется int().

Попробуйте расширить предыдущий пример кода, который отслеживает количество написанных строк. Пусть программа отслеживает, сколько строк пишет пользователь каждый день.

При запуске возникла ошибка, поскольку Python не может выполнить сложение строк. Преобразуйте строки в числа и попробуйте снова запустить программу:

Значение переменной lines_more – это число, в данном случае это 58.

Также можно преобразовать числа в предыдущем примере в числа с плавающей точкой. Для этого используйте метод float() вместо int().

К примеру, очки начисляются в десятичных значениях.

В данном случае оператор + склеивает две строки, а не складывает числа. Потому в результате получилось довольно странное значение.

Конвертируйте эти строки в числа с плавающей точкой, а затем выполните сложение.

Как видите, теперь программа возвращает ожидаемый результат.

Если вы попробуете преобразовать строку с десятичными значениями в целое число, вы получите ошибку:

Форматирование строк

Часто возникает ситуация, когда необходимо создать строку, подставив в нее определенные значения, полученные во время выполнения программы. Подстановка данных в таком случае выполняется при помощи форматирования строк, сделать это можно несколькими способами.

Оператор %

Строки в Python обладают встроенной операцией, к которой можно получить доступ оператором %, что дает возможность очень просто делать форматирование. Самый простой пример – когда для подстановки нужен только один аргумент, значением будет он сам:

Если же для подстановки используется несколько аргументов, то значением будет кортеж со строками:

Как видно из предыдущего примера, зависимо от типа данных для подстановки и того, что требуется получить в итоге, пишется разный формат. Наиболее часто используются:

  1. ‘%d’, ‘%i’, ‘%u – десятичное число;
  2. ‘%c’ – символ, точнее строка из одного символа или число – код символа;
  3. ‘%r’ – строка (литерал Python);
  4. ‘%s’ – строка.

Такой способ форматирования строк называет «старым» стилем, который в Python 3 был заменен на более удобные способы.

str.format()

В Python 3 появился более новый метод форматирования строк, который вскоре перенесли и в Python 2.7. Такой способ избавляет программиста от специального синтаксиса %-оператора. Делается все путем вызова .format() для строковой переменной. С помощью специального символа – фигурных скобок – указывается место для подстановки значения, каждая пара скобок указывает отдельное место для подстановки, значения могут быть разного типа:

В Python 3 форматирование строк с использованием «нового стиля» является более предпочтительным по сравнению с использованием %-стиля, так как предоставляет более широкие возможности, не усложняя простые варианты использования.

f-строки (Python 3.6+)

В Python версии 3.6 появился новый метод форматирования строк – «f-строки», с его помощью можно использовать встроенные выражения внутри строк:

Такой способ форматирования очень мощный, так как дает возможность встраивать выражения:

Таким образом, форматирование с помощью f-строк напоминает использование метода format(), но более гибкое, быстрое и читабельное.

Стандартная библиотека Template Strings

Еще один способ форматирования строк, который появился еще с выходом Python версии 2.4, но так и не стал популярным – использование библиотеки Template Strings. Есть поддержка передачи значения по имени, используется $-синтаксис как в языке PHP:

Последовательности

Ещё одно понятие из математики. Там, последовательность – есть нумерованный набор элементов, в котором возможны их повторения, а порядок имеет значение. Определение Питона схоже с математическим: здесь последовательностью зовётся упорядоченная коллекция объектов.

str (строка)

Строки, пожалуй, единственный объект, который может сравниться по степени своей используемости с числовым типом данных. Тавтологическое, но полное определение, справедливое для Python звучит так:

Важность строк велика в первую очередь для людей, ведь понятно, что вся письменная речь может рассматриваться, как множество строк. А так как человеку свойственно обмениваться информацией именно в виде набора слов, то можно говорить о практически неограниченном количестве областей применения строкового типа данных

Строки, строки everywhere!

list (список)

Список – это ещё один вид последовательностей… Здесь стоит остановиться и отметить, что последовательности в Python бывают изменяемыми и неизменяемыми. Список – изменяемая последовательность, а строки и кортежи – нет. Таким образом, список можно определить, как упорядоченную и изменяемую коллекцию, состоящую из объектов произвольных типов.

Само название списков говорит об их предназначении быть объектами для хранения наборов данных. Список покупок, подарков, результатов матчей, ip клиентов или объектов типа Student. Списки в Python – это эдакие массивы из прочих языков «на максималках».

tuple (кортеж)

Кортежи в языке Python можно рассматривать, как неизменяемые списки со всеми вытекающими:

Использование кортежей оправдано, когда разработчику важна скорость работы или неизменяемость элементов последовательности.

Типы данных и преобразование типов

Перечислим основные типы данных в Python, которые понадобятся на ближайших уроках:

  • int – целочисленные значения;float – вещественные (дробные) значения;bool – логические значения — истина (True) или ложь (False);str – символьная строка или единичный символ.

Рассмотрим примеры использования основных типов в Python:Целые числа (int):

num = 13
print(num)  # 13
 
num = 
print(num)  # 0
 
num = -10
print(num)  # -10
 
num = 500_000_000  # для удобства чтения
print(num) # 500000000

Вещественные числа (float):

num = 13.4
print(num) # 13.4
 
num = 0.0
print(num) # 0.0
 
num = -15.2
print(num) # -15.2
 
num = 100_000.000_002 # для удобства чтения
print(num) # 100000.000002
 
num = 1.7e2 # 1.7 умножить на 10 в степени 2
print(num) # 170

Логический тип (bool):

print(15 == 15) # True
 
print(1 != 3) # True
 
print(3 > 4) # False
 
print(3 <= 3) # True
 
print(6 >= 6) # True
 
print(6 < 5) # False
 
x = 2
print(1 < x < 3) # True

Строки (str):

example_string = "Очень интересно"
print(example_string) # Очень интересно
 
example_string = 'Пьеса "На дне"'
print(example_string) # Пьеса "На дне"
 
example_string = "Пьеса \"На дне\"
print(example_string) # Пьеса "На дне"
 
example_string = "Как " \
                 "разбить " \
                 "объявление длинной строки"
print(example_string) # Как разбить объявление длинной строки
 
example_string = """
                 Как  
                 оставить сроку
                 в несколько строк
                 """
print(example_string) 
# Как  
# оставить сроку
# в несколько строк
# Как объединить две строки в одну
print("Можно их" + " сложить") # Можно их сложить 
 
print("Можно и так!" * 3) # Можно и так!Можно и так!Можно и так!

Рассмотрим примеры того, как используется преобразование типов в Питон:

  • преобразование в символьную строку:
1
2
3
a = 1.7
a=str(a)
print(a) # '1.7'

преобразование в целое:

1
2
3
x = 1.7
x=int(x)
print(x) # 1

преобразование в вещественное:

1
2
3
y=1
y=float(y)
print(y) # 1.0

Использование модуля pickle на своих объектах

протокол

Сериализация собственных объектов.

  • Если вы хотите, чтобы после десериализации вашего класса был вызыван , вы можете определить , который должен вернуть кортеж аргументов, который будет отправлен в . Заметьте, что этот метод работает только с классами старого стиля.

  • Для классов нового стиля вы можете определить, какие параметры будут переданы в во время десериализации. Этот метод так же должен вернуть кортеж аргументов, которые будут отправлены в .

  • Вместо стандартного атрибута , где хранятся атрибуты класса, вы можете вернуть произвольные данные для сериализации. Эти данные будут переданы в во время десериализации.

  • Если во время десериализации определён , то данные объекта будут переданы сюда, вместо того чтобы просто записать всё в . Это парный метод для : когда оба определены, вы можете представлять состояние вашего объекта так, как вы только захотите.

  • Если вы определили свой тип (с помощью Python’s C API), вы должны сообщить Питону как его сериализовать, если вы хотите, чтобы он его сериализовал. вызывается когда сериализуется объект, в котором этот метод был определён. Он должен вернуть или строку, содержащую имя глобальной переменной, содержимое которой сериализуется как обычно, или кортеж. Кортеж может содержать от 2 до 5 элементов: вызываемый объект, который будет вызван, чтобы создать десериализованный объект, кортеж аргументов для этого вызываемого объекта, данные, которые будут переданы в (опционально), итератор списка элементов для сериализации (опционально) и итератор словаря элементов для сериализации (опционально).

  • Иногда полезно знать версию протокола, реализуя . И этого можно добиться, реализовав вместо него . Если реализован, то предпочтение при вызове отдаётся ему (вы всё-равно должны реализовать для обратной совместимости).

Преобразование типов номеров

В Python существует два типа данных данных : целые числа и числа с плавающей запятой или поплавки. Иногда вы работаете над чьим-то кодом и вам нужно преобразовать целое число в float или наоборот, или вы можете обнаружить, что вы используете целое число, когда то, что вам действительно нужно, — это float. Python имеет встроенные методы, позволяющие легко преобразовывать целые числа в float и float в целые числа.

Преобразование целых чисел в поплавки

Метод Python будет преобразовывать целые числа в float. Чтобы использовать эту функцию, добавьте целое число в круглые скобки:

В этом случае будет преобразовано в .

Вы также можете использовать это с переменной. Объявим как равный , а затем распечатаем новый float:

Output

Используя эту функцию, мы можем преобразовать целые числа в float.

Преобразование плавающих чисел в целые числа

Python также имеет встроенную функцию для преобразования поплавков целых чисел: .

Функция работает аналогично функции: вы можете добавить число с плавающей точкой внутри скобок , чтобы преобразовать его в целое число:

В этом случае будет преобразовано в .

Вы также можете использовать это с переменными. Объявим как равные и равные , а затем распечатаем новые поплавки:

Output

При преобразовании float в целые числа с функцией Python отключает десятичные и оставшиеся числа float для создания целого числа. Несмотря на то, что мы, возможно, захотим округлить 390,8 до 391, Python не будет делать этого через функцию.

Цифры, конвертированные под деление

В Python 3 соответствующие коэффициенты преобразуются из целых чисел в float при выполнении разделения, хотя они не находятся в Python 2 . То есть, когда вы разделите 5 на 2, в Python 3 вы получите поплавок для ответа (2.5):

Output

В Python 2, так как вы имели дело с двумя целыми числами, вы получите целое число обратно в качестве ответа, вместо этого: . Прочтите « Python 2 vs Python 3: Практические соображения » для получения дополнительной информации о различиях между Python 2 и Python 3.

Поиск подстроки

Перед выполнением любой задачи по очистке мы должны определить, действительно ли она нужна. В большинстве случаев вопрос сводится к поиску какого-либо символа или фразы в тексте. Python предоставляет множество функций для наших целей.

Заканчивается ли строка указанной подстрокой:

test_string.endswith('dog')
Out: True

Начинается ли строка с указанной подстроки:

test_string.startswith('dog')
Out: False

Содержит ли строка указанную подстроку:

'fox' in test_string
Out: True

Получение индекса подстроки:

test_string.find('fox')
Out: 16

Конечно, любую задачу можно решить множеством способов, особенно если мы говорим о Python. Однако мы думаем, что наше видение синтаксического анализа строк будет для вас полезным.

Виды и типы сайтов. Коммерческие и личные сайты

Создать свой сайт в интернете может практически каждый. Не говоря уже о коммерческих и некоммерческих организациях.

Виды и типы сайтов. Личные сайты

 Таким сайтом владеет один человек. Эти сайты сейчас составляют большинство. Спектр этих сайтов весьма широк — от маленьких домашних страничек (home page), где есть немного информации о владельце и его увлечениях, до очень известных и популярных ресурсов. Сейчас пользуются большой популярностью личные сайты педагогов по различным дисциплинам: например сайт учителя информатики

Виды и типы сайтов. Сайты коммерческих организаций

Коммерческий сайт всегда является инструментом продаж или рекламы.

Существует несколько разновидностей коммерческих сайтов:

 1. Корпоративный сайт 

Идеальное решение для любого типа бизнеса. Этот тип сайта может содержать полную информацию о Вашем бизнесе и деятельности. Разрабатывается уникальный дизайн вашего представительства в Сети. Корпоративный сайт необходим для создания имиджа успешной и динамичной деловой компании, прозрачной и понятной потенциальным клиентам.

Это сайт, основной задачей которого является продажа услуг или товаров. Такой сайт позволяет потребителям подробно узнать о характеристиках той или иной продукции, просмотреть весь список предлагаемых товаров или услуг. Сайт-каталог обычно содержит технические характеристики, полное описание и фотографии предложенного товара или услуги.

4. Промо-сайт (лендинг)

Чаще всего представляет собой одностраничный веб-ресурс, предназначенный для продвижения какого-либо уникального товара или услуги. Имеется возможность обратной связи и On Line заказа. Хорошо подходит для проведения рекламной акции с целью более эффективного продвижения своей продукции.

            Создание промо-сайтов особенно выгодно для больших компаний, которые желают выделить какой-либо определенный товар среди множества других, в эффектном виде рассказать клиентам об его особенностях и преимуществах

Задача промо-сайта – за короткие сроки привлечь внимание клиентов или коллег по бизнесу к конкретному товару, услуге или информировать о проходящей акции или мероприятии

5. Инфобизнес-сайты

 На сегодняшний день занимают отдельную нишу в Интернете. Успех такого сайта зависит от копирайтера, который должен убедить посетителя приобрести тот или иной информационный продукт, например обучающий курс, систему тренировок или бизнес-идею, либоЮ как минимум, подписаться на какую-либо рассылку.

 Сайты для инфобизнеса представляют собой длинные одностраничники с текстами, разделенными на блоки. Сроки создания такого сайта зависят целиком от длины такого сайта, а значит – от объема текста, который требуется написать копирайтеру.

Коммерческий сайт — это всегда инструмент бизнеса, для создания которого требуется опыт и профессионализм. Чтобы самостоятельно разобраться во всех тонкостях Вам потребуется не одна неделя, по.тому лучше довериться профессионалам. Чтобы сэкономить Ваше время, мы предлагаем взять на себя вопрос разработки коммерческого сайта для Вашего бизнеса.

Сайты некоммерческих организаций

Сайты политических партий и общественных движений, и сайты научно-исследовательских институтов и т. д. и т. п., новостные ресурсы, ресурсы, представляющие онлайновые версии различных СМИ. Для двух особых категорий сайтов некоммерческих организаций, а именно сайтов государственных и образовательных учреждений в интернете даже выделены специальные доменные зоны: .gov и .edu.

Другие методы для работы со строками в Python

В языке Пайтон имеется большое кол-во различных методов для работы со строками. Если рассматривать их все в этой статье, то она может увеличить раза в три, а то и больше. Подробное описание работы всех методов можно найти в официальной документации к языку на сайте https://python.org/

Postmypost

Группировка элементов нескольких списков

zip(*iterables)

Возвращает итератор по кортежам, где i-й кортеж содержит i-й элемент из каждого переданного итерируемого объекта.

Параметры:

— итерируемые объекты.

Возвращаемое значение:

Итератор по кортежам на основе переданных итерируемых объектов.

  • Если был передан один итерируемый объект, то будет возвращен итератор по кортежам, каждый из которых имеет только один элемент.
  • Если итерируемые объекты не были переданы, то будет возвращен пустой итератор.

Примечание:

Итератор останавливается, когда самая короткая из последовательностей исчерпана:

list(zip(, , ))   # 

Если у вас последовательности разной длины и потеря данных недопустима, используйте .

В сочетании с оператором функция может быть использована для распаковки списка (см. Пример 2).

Примеры:

Пример 1: Использование .

number_list = 
str_list = 

# Без аргументов
result = zip()

# Преобразование итератора в список
result_list = list(result)
print(result_list)

# С двумя итерируемыми объектами
result = zip(number_list, str_list)

# Преобразование итератора во множество
result_set = set(result)
print(result_set)

Результат:

{(3, ‘three’), (2, ‘two’), (1, ‘one’)}

Пример 2: Распаковка списка с использованием .

coordinate = 
value = 

result = zip(coordinate, value)
result_list = list(result)
print(result_list)

c, v =  zip(*result_list)
print('c =', c)
print('v =', v)

Результат:

c = (‘x’, ‘y’, ‘z’)

v = (3, 4, 5)

Контроль доступа к атрибутам

Вы можете определить поведение для случая, когда пользователь пытается обратиться к атрибуту, который не существует (совсем или пока ещё). Это может быть полезным для перехвата и перенаправления частых опечаток, предупреждения об использовании устаревших атрибутов (вы можете всё-равно вычислить и вернуть этот атрибут, если хотите), или хитро возвращать , когда это вам нужно. Правда, этот метод вызывается только когда пытаются получить доступ к несуществующему атрибуту, поэтому это не очень хорошее решение для инкапсуляции.

В отличии от , решение для инкапсуляции. Этот метод позволяет вам определить поведение для присвоения значения атрибуту, независимо от того существует атрибут или нет. То есть, вы можете определить любые правила для любых изменений значения атрибутов. Впрочем, вы должны быть осторожны с тем, как использовать , смотрите пример нехорошего случая в конце этого списка.

Это то же, что и , но для удаления атрибутов, вместо установки значений

Здесь требуются те же меры предосторожности, что и в чтобы избежать бесконечной рекурсии (вызов в определении вызовет бесконечную рекурсию).

выглядит к месту среди своих коллег и , но я бы не рекомендовал вам его использовать. может использоваться только с классами нового типа (в новых версиях Питона все классы нового типа, а в старых версиях вы можете получить такой класс унаследовавшись от )

Этот метод позволяет вам определить поведение для каждого случая доступа к атрибутам (а не только к несуществующим, как ). Он страдает от таких же проблем с бесконечной рекурсией, как и его коллеги (на этот раз вы можете вызывать у базового класса, чтобы их предотвратить). Он, так же, главным образом устраняет необходимость в , который в случае реализации может быть вызван только явным образом или в случае генерации исключения . Вы конечно можете использовать этот метод (в конце концов, это ваш выбор), но я бы не рекомендовал, потому что случаев, когда он действительно полезен очень мало (намного реже нужно переопределять поведение при получении, а не при установке значения) и реализовать его без возможных ошибок очень сложно.

Как изменить или удалить строку?

Строки относятся к неизменяемым типам данных (immutable type). Это означает, что элементы строки не могут быть изменены после того, как она была создана. Мы можем просто переназначить разные строки одному и тому же имени.

>>> my_string = 'programfiles'
>>> my_string = 'a'
...
TypeError: 'str' object does not support item assignment
>>> my_string = 'Python'
>>> my_string
‘Python'

Мы не можем удалять символы из строки. Но полностью удалить строку можно с помощью ключевого слова del.

>>> del my_string
...
TypeError: 'str' object doesn't support item deletion
>>> del my_string
>>> my_string
...
NameError: name 'my_string' is not defined

С помощью любой банковской карты

Пополняя баланс Киви-кошелька, можно не заводить специально пластик, достаточно выполнить несколько условий:

  1. Авторизоваться в и кликнуть на пополнение кошелька.
  2. Среди перечисленных типов пополнения выбрать подходящий – «Банковская карта». Манипулируя в меню, кликнуть сначала по «Места пополнений», а затем последующий пункт: «Любой картой».
  3. Даже если на странице с картами нет нужного банка, выбираем «Другой», вводим информацию с карты и регистрируем ее.
  4. Действия предприняты чтобы привязать пластиковую карточку к Киви. Теперь она находится в разделе в кабинете участника «Работа со счетами».
  5. Чтобы довести дело до конца, нужно зайти в этот раздел, кликнуть по нужной карте на «Перевести» и указать денежную сумму, которая будет перемещена с карты на Киви кошелек.

Как можно пополнить Киви кошелек – автор ролика begzot beg.

Целые числа (int)

Числа в Python 3 ничем не отличаются от обычных чисел. Они поддерживают набор самых обычных математических операций:

x + y Сложение
x — y Вычитание
x * y Умножение
x / y Деление
x // y Получение целой части от деления
x % y Остаток от деления
-x Смена знака числа
abs(x) Модуль числа
divmod(x, y) Пара (x // y, x % y)
x ** y Возведение в степень
pow(x, y) xy по модулю (если модуль задан)

Также нужно отметить, что целые числа в python 3, в отличие от многих других языков, поддерживают длинную арифметику (однако, это требует больше памяти).

>>> 255 + 34
289
>>> 5 * 2
10
>>> 20  3
6.666666666666667
>>> 20 // 3
6
>>> 20 % 3
2
>>> 3 ** 4
81
>>> pow(3, 4)
81
>>> pow(3, 4, 27)
>>> 3 ** 150
369988485035126972924700782451696644186473100389722973815184405301748249

Битовые операции

Над целыми числами также можно производить битовые операции

x | y Побитовое или
x ^ y Побитовое исключающее или
x & y Побитовое и
x << n Битовый сдвиг влево
x >> y Битовый сдвиг вправо
~x Инверсия битов

Дополнительные методы

int.bit_length() — количество бит, необходимых для представления числа в двоичном виде, без учёта знака и лидирующих нулей.

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6

int.to_bytes(length, byteorder, *, signed=False) — возвращает строку байтов, представляющих это число.

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() // 8) + 1, byteorder='little')
b'\xe8\x03'

classmethod int.from_bytes(bytes, byteorder, *, signed=False) — возвращает число из данной строки байтов.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes(, byteorder='big')
16711680

Используем рекурсию

# Python code to reverse a string  
# using recursion 
  
def reverse(s): 
    if len(s) == 0: 
        return s 
    else: 
        return reverse(s) + s 
  
s = "Pythonist"
  
print ("The original string  is : ",end="") 
print (s) 
  
print ("The reversed string(using recursion) is : ",end="") 
print (reverse(s)) 
The original string  is : Pythonist
The reversed string(using recursion) is : tsinohtyP  

Объяснение: В приведенном выше коде строка передается в качестве аргумента рекурсивной функции для обращения строки. В функции основное условие состоит в том, что если длина строки равна 0, строка возвращается. Если не равно 0, рекурсивно вызывается обратная функция, чтобы разрезать часть строки, оставив первый символ, и объединить первый символ с концом отрезанной строки.

Конструирование и инициализация.

Это первый метод, который будет вызван при инициализации объекта. Он принимает в качестве параметров класс и потом любые другие аргументы, которые будут переданы в . используется весьма редко, но иногда бывает полезен, в частности, когда класс наследуется от неизменяемого (immutable) типа, такого как кортеж (tuple) или строка. Я не намерен очень детально останавливаться на , так как он не то чтобы очень часто нужен, но этот метод очень хорошо и детально описан в .

Инициализатор класса. Ему передаётся всё, с чем был вызван первоначальный конструктор (так, например, если мы вызываем , получит и в качестве аргументов. почти повсеместно используется при определении классов.

Если и образуют конструктор объекта, это его деструктор. Он не определяет поведение для выражения (поэтому этот код не эквивалентен ). Скорее, он определяет поведение объекта в то время, когда объект попадает в сборщик мусора. Это может быть довольно удобно для объектов, которые могут требовать дополнительных чисток во время удаления, таких как сокеты или файловыве объекты. Однако, нужно быть осторожным, так как нет гарантии, что будет вызван, если объект продолжает жить, когда интерпретатор завершает работу. Поэтому не может служить заменой для хороших программистских практик (всегда завершать соединение, если закончил с ним работать и тому подобное)

Фактически, из-за отсутствия гарантии вызова, не должен использоваться почти никогда; используйте его с осторожностью!Замечание от переводчика: svetlov , что здесь автор ошибается, на самом деле всегда вызывается по завершении работы интерпретатора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector