Постоянное соединение и кэширование в http

3.1 Content-Type: application/x-www-form-urlencoded.

Пишем запрос, аналогичный нашему запросу GET для передачи логина и пароля, который был рассмотрен в предыдущей главе:

POST http://www.site.ru/news.html HTTP/1.0\r\n
Host: www.site.ru\r\n
Referer: http://www.site.ru/index.html\r\n
Cookie: income=1\r\n
Content-Type: application/x-www-form-urlencoded\r\n
Content-Length: 35\r\n
\r\n
login=Petya%20Vasechkin&password=qq

Здесь мы видим пример использования Content-Type и Content-Length полей заголовка. Content-Length говорит, сколько байт будет занимать область данных, которая отделяется от заголовка еще одним переводом строки \r\n. А вот параметры, которые раньше для запроса GET помещались в Request-URI, теперь находятся в Entity-Body. Видно, что они формируются точно также, просто надо написать их после заголовка. Хочу отметить еще один важный момент, ничто не мешает, одновременно с набором параметров в Entity-Body, помещать параметры с другими именами в Request-URI, например:

POST http://www.site.ru/news.html?type=user HTTP/1.0\r\n
…..
\r\n
login=Petya%20Vasechkin&password=qq

Структура протокола

Каждое HTTP-сообщение состоит из трёх частей, которые передаются в указанном порядке:

  • Стартовая строка (Starting line) — определяет тип сообщения;
  • Заголовки (Headers) — характеризуют тело сообщения, параметры передачи и другие сведения;
  • Тело сообщения (Message Body) — непосредственно данные сообщения. Обязательно должно отделяться от заголовков пустой строкой.

Из этих трёх частей обязательной является стартовая строка, а заголовки и тело сообщения могут отсутствовать. Связано это с тем, что именно стартовая строка указывает на тип запроса/ответа. Исключением является версия 0.9 протокола, у которой сообщение запроса содержит только стартовую строку, а сообщения ответа только тело сообщения.

Коды состояния

В ответ на запрос от клиента, сервер отправляет ответ, который содержит, в том числе, и код состояния. Данный код несёт в себе особый смысл для того, чтобы клиент мог отчётливей понять, как интерпретировать ответ:

1xx: Информационные сообщения

Набор этих кодов был введён в HTTP/1.1. Сервер может отправить запрос вида: Expect: 100-continue, что означает, что клиент ещё отправляет оставшуюся часть запроса. Клиенты, работающие с HTTP/1.0 игнорируют данные заголовки.

2xx: Сообщения об успехе

Если клиент получил код из серии 2xx, то запрос ушёл успешно. Самый распространённый вариант — это 200 OK. При GET запросе, сервер отправляет ответ в теле сообщения. Также существуют и другие возможные ответы:

  • 202 Accepted: запрос принят, но может не содержать ресурс в ответе. Это полезно для асинхронных запросов на стороне сервера. Сервер определяет, отправить ресурс или нет.
  • 204 No Content: в теле ответа нет сообщения.
  • 205 Reset Content: указание серверу о сбросе представления документа.
  • 206 Partial Content: ответ содержит только часть контента. В дополнительных заголовках определяется общая длина контента и другая инфа.

3xx: Перенаправление

Своеобразное сообщение клиенту о необходимости совершить ещё одно действие. Самый распространённый вариант применения: перенаправить клиент на другой адрес.

  • 301 Moved Permanently: ресурс теперь можно найти по другому URL адресу.
  • 303 See Other: ресурс временно можно найти по другому URL адресу. Заголовок Location содержит временный URL.
  • 304 Not Modified: сервер определяет, что ресурс не был изменён и клиенту нужно задействовать закэшированную версию ответа. Для проверки идентичности информации используется ETag (хэш Сущности — Enttity Tag);

4xx: Клиентские ошибки

Данный класс сообщений используется сервером, если он решил, что запрос был отправлен с ошибкой. Наиболее распространённый код: 404 Not Found. Это означает, что ресурс не найден на сервере. Другие возможные коды:

  • 400 Bad Request: вопрос был сформирован неверно.
  • 401 Unauthorized: для совершения запроса нужна аутентификация. Информация передаётся через заголовок Authorization.
  • 403 Forbidden: сервер не открыл доступ к ресурсу.
  • 405 Method Not Allowed: неверный HTTP метод был задействован для того, чтобы получить доступ к ресурсу.
  • 409 Conflict: сервер не может до конца обработать запрос, т.к. пытается изменить более новую версию ресурса. Это часто происходит при PUT запросах.

5xx: Ошибки сервера

Ряд кодов, которые используются для определения ошибки сервера при обработке запроса. Самый распространённый: 500 Internal Server Error. Другие варианты:

  • 501 Not Implemented: сервер не поддерживает запрашиваемую функциональность.
  • 503 Service Unavailable: это может случиться, если на сервере произошла ошибка или он перегружен. Обычно в этом случае, сервер не отвечает, а время, данное на ответ, истекает.

В чем различия между http и https?

Теперь перейдем к основному вопросу: в чем заключается главная разница между http и https? По ранее описанным особенностям протоколов можно понять, какие между ними отличия. Но если посмотреть более пристально, то можно понять, что есть и другие отличительные черты.

  1. Каждый из протоколов функционирует при помощи специальных портов. Но для работы http используется порт 80, а для https – 443.
  2. С учетом того, как работает https, мы ранее сделали вывод, что применяемое шифрование данных надежно защищает их от злоумышленников. Для их расшифровки используются специальные ключи, хранящиеся на сервере. Для http это не характерно.
  3. Защищенное соединение гарантирует полную сохранность данных. Даже если в них будут внесены незначительные коррективы, система моментально их зафиксирует.
  4. Протокол безопасности предоставляет аутентификацию. То есть, пользователь может быть уверен в том, что попадет именно на тот ресурс, который ищет. Такой подход помогает предотвратить любые посторонние вмешательства.

Есть еще несколько важных моментов, о которых нужно знать. Понимая, что означает https в адресе сайта, вы можете быть полностью уверенными в безопасном подключении к серверу. Но такой протокол «тянет» определенную часть ресурсов с этого самого сервера, поэтому загрузка сайта может несколько замедлиться.

На заметку. Если сайт использует http, то при перенаправлении на него поисковая система выдает уведомление о небезопасном подключении. Продолжать соединение или прервать его – это уже на ваше усмотрение.

Нужно ли переходить на HTTPS?

Если ваш сайт содержит информацию, которая быть надежно защищена, то переходить на безопасный протокол нужно обязательно. В противном случае в любой момент важные данные могут быть украдены и использованы в мошеннических целях. Но будьте готовы к тому, что за переход на https вам придется вносить дополнительную плату, если выберете платный SSL-сертификат. А также оплачивать услуги программиста фрилансера от 1000 до 3000 рублей.

При создании новых ресурсов лучше сразу подключать защищенный протокол, поскольку, как утверждают эксперты, в будущем преимущество будет отдаваться именно им. Например, в браузерах такие сайты будут помечены значками, что повысит их посещаемость.

Таким образом, http и https – это понятия во многом схожие, но между ними есть принципиальная разница. Зная, в чем она заключается, каждый сайтовладелец сможет выбрать для себя оптимальный вариант.

Действительно ли HTTP/2 работает быстрее?

Специалисты из HttpWatch провели несколько тестов и выявили серьезное ускорение от использования HTTP/2.

На скриншоте ниже показана скорость загрузки страницы с использованием HTTP/1.1:

А на этом скриншоте — результат с использованием HTTP/2:

Скорость загрузки выросла на 23%. Эксперты HttpWatch также отмечают, что технология пока не до конца оптимизирована, и ожидают реальное ускорение в районе 30%.

Мы в «Айри» также проводили тестирование в январе-феврале 2016 года, чтобы выяснить, сколько может выиграть реальный сайт после перевода на протокол HTTPS + HTTP/2. В среднем по нескольким сайтам, которые уже прошли предварительную оптимизацию по скорости (сжатие и объединение файлов, сетевая оптимизация), клиентская скорость загрузки выросла на 13-18% только за счет включения HTTP/2.

Стоит упомянуть, что не все эксперименты были столь однозначны. На «Хабре» был описан эксперимент, поставленный командой «Яндекс.Почты». Тестировался протокол SPDY, но напомним, что HTTP/2 разрабатывался на основе SPDY и очень близок к нему в плане используемых методов.

Команда «Яндекс.Почты», протестировав SPDY на части своих реальных пользователей, установила, что среднее время загрузки изменилось всего лишь на 0,6% и не превысило статистической погрешности. Однако специалисты «Яндекс.Почты» обнаружили, тем не менее, положительный момент от использования SPDY. Поскольку число соединений с серверами уменьшилось (это ключевая особенность SPDY и HTTP/2), то нагрузка на серверы заметно сократилась).

Несколько HTTP соединений

Еще один вариант, как можно увеличить скорость загрузки web-страниц это использовать несколько HTTP соединений. Клиент открывает несколько соединений с web сервер и каждое соединение используется для загрузки разных ресурсов.

Например, первое соединение для загрузки стилевого файла, следующие соединение для загрузки javascript и другие соединения для передачи различных картинок. Каждое такое соединение может быть постоянным и использоваться для загрузки нескольких ресурсов, а также внутри таких соединений можно использовать HTTP pipelining. Почти все современные браузеры используют несколько HTTP соединений как правило от 4 до 8.

Что дает HTTPS для ранжирования сайта?

Пример сеанса FTP

Мы подключились к серверу на порт 21, создали управляющее соединение, сервер нам выдал ответ. 

Ответ FTP сервера, также как и ответы серверов многих прикладных протоколов состоят из двух частей, первая 220 статус, а вторая поясняющее сообщение Welcome to the FTP Server. Статус ответа 220, коды которой начинаются с 2, говорят об успешном выполнении команды, поясняющее сообщение содержит приветствие “Добро пожаловать на FTP сервер”. 

Сначала необходимо пройти аутентификацию. Для этого используется команда USER anonymous и мы хотим подключиться, как анонимный пользователь. 

Сервер отвечает сообщением со статусом 331. Код, который начинается с 3 говорит о том, что предыдущая команда была выполнена успешно и ожидается продолжение выполнения связанных действий. 

Устанавливаем бинарный режим передачи файлов с помощью команды TYPE 1. Сервер отвечает, что тип передачи данных успешно установлен в 1. 200 Type set to 1

Мы хотим загрузить сервера в файл, показан путь /pud/tex/latex/llncs2e.zip, но перед тем как загрузить, мы хотим узнать его размер, для этого выдаем команду SIZE /pud/tex/latex/llncs2e.zip. Сервер в ответ выдает размер файла в байтах 213 230229

Переходим в пассивный режим с помощью команды PASV

В ответ сервер говорит, что он перешел в пассивный режим 227 Entering Passive Mod (213, 71, 6, 142, 35, 141) и передает нам 6 чисел, которые нужно использовать для установки соединения для передачи данных. Первые 4 числа это IP-адрес, вторые два числа используются, чтобы узнать порт на который нужно установить соединение. Первое число 35 нужно умножить на 256 и прибавить второе число 141, так мы узнаем порт. 

Для того, чтобы загрузить нужный нам файл используем команду RETR /pud/tex/latex/llncs2e.zip. После того, как мы выдали эту команду сервер ждет, что мы установим соединение с IP-адресом и портом, которые он нам указал. 

После того, как соединение для передачи данных установлено, сервер сообщает нам об этом в управляющем соединении. 150 Opening BINARY mode data connection for /pud/tex/latex/llncs2e.zip (230229 bytes). Также сервер говорит, что передача данных ведется в бинарном режиме. 

После того, как передача файла закончена, сервер сообщает нам об этом 226 Transfer complete. Клиент выдает команду QUIT чтобы разорвать соединение. Сервер сообщает нам некоторую статистику, сколько было передано байт и файлов. 221 You have transferred 239229 bytes in 1 file. И говорит до свидания 221 Goodbye. На этом сеанс работы по протоколу FTP завершен. 

Структура протокола

Запрос

Сообщение-запрос от клиента к серверу включает в себя, в пределах первой строки сообщения, метод, который должен быть использован для ресурса, идентификатор ресурса и код версии используемого протокола.

Request            = Request-Line	
                          *( generalheader	
                          | requestheader	
                          | entityheader )	
                          CRLF	
                          

Отклик

После получения и интерпретации сообщения-запроса, сервер реагирует, посылая HTTP сообщение отклик.

Response	= Status-Line	; Раздел 5.1
*( general-header	; Раздел 3.5
| response-header	; Раздел 5.2
| entity-header )	; Раздел 6.1
CRLF	
	; Раздел 6.2

Отправив HTTP-запрос серверу, клиент ожидает ответа. HTTP-ответ выглядит в целом аналогично запросу: статусная строка, список заголовков и тело ответа.

HTTP/1.1 200 OK
Server: nginx/0.5.35
Date: Tue, 22 Apr 2008 10:18:08 GMT
Content-Type: text/plain; charset=utf-8
Connection: close
Last-Modified: Fri, 30 Nov 2007 12:46:53 GMT
ETag: ``27e74f-43-4750063d''
Accept-Ranges: bytes
Content-Length: 34

User-agent: *
Disallow: /people

Объект и соединение

Сообщения запрос и отклик могут нести в себе объект, если это не запрещено методом запроса или статусным кодом отклика. Объект состоит из полей заголовка объекта и тела объекта, хотя некоторые отклики включают в себя только заголовки объектов.
В данном разделе, как отправитель, так и получатель соотносятся к клиенту или серверу, в зависимости от того, кто отправляет и кто получает объект.


Структура ресурса и объекта

Постоянное HTTP соединение имеет много преимуществ:

  • При открытии и закрытии TCP соединений можно сэкономить время CPU и память, занимаемую управляющими блоками протокола TCP.
  • HTTP запросы и отклики могут при установлении связи буферизоваться (pipelining), образуя очередь. Буферизация позволяет клиенту выполнять множественные запросы, не ожидая каждый раз отклика на запрос, используя одно соединение TCP более эффективно и с меньшими потерями времени.
  • Перегрузка сети уменьшается за счет сокращения числа пакетов, сопряженных с открытием и закрытием TCP соединений, предоставляя достаточно времени для детектирования состояния перегрузки.
  • HTTP может функционировать более эффективно, так как сообщения об ошибках могут доставляться без потери TCP связи.Клиенты, использующие будущие версии HTTP, могут испытывать новые возможности, взаимодействуя со старым сервером, они могут после неудачи попробовать старую семантику. HTTP реализациям следует пользоваться постоянными соединениями.

Клиенты

Первоначально протокол HTTP разрабатывался для доступа к гипертекстовым документам Всемирной паутины. Поэтому основными реализациями клиентов являются браузеры (агенты пользователя). Для просмотра сохранённого содержимого сайтов на компьютере без соединения с Интернетом были придуманы офлайн-браузеры. При нестабильном соединении для загрузки больших файлов используются Менеджеры закачек. Они позволяют в любое время докачать указанные файлы после потери соединения с веб-сервером. Виртуальные атласы тоже используют HTTP.

Статусы HTTP

В ответе сервера первое поле это статус обработки запроса, статусы сгруппированы в пять групп и для каждой группы используется код статуса состоящий из трехзначного числа. 

  • Статусы, которые начинаются на единицу (1ХХ), используются для передачи информационных сообщений.
  • Статусы, которые начинаются на двойку (2ХХ), говорят о том, что запрос выполнен успешно, например наиболее популярный статус (200 OK), означает что страница найдена и она передается клиенту.
  • Статусы, которые начинаются на тройку (3ХХ), говорят о перенаправлении, например статус 301 — постоянное перенаправление, говорит о том что страница была перемещена на другой адрес и все последующие запросы должны передаваться на этот новый адрес. Статус 307 тоже говорит о перенаправлении, но временном, сейчас доступ к странице можно получить по другому адресу, но через некоторое время необходимо снова обращаться к исходному адресу.
  • Статусы, которые начинаются с четверки (4ХХ), говоря о том, что произошла какая-то ошибка на стороне клиента. Чаще всего встречается ошибка 404 — страница, которую запросил клиент не найдена на сервере. Также возможна ошибка 403 доступ к ресурсу, который запросил клиент запрещен и другие ошибки. 
  • Статусы начинающиеся на пять (5ХХ) говорят об ошибке на стороне сервера, например 500 — внутренняя ошибка сервера. 

Почему важно искать возможности ускорить загрузку страниц сайта?

Джон Мюллер, аналитик из команды Google Webmaster Trends, в своем блоге написал, что наличие на сайте поддержки HTTP/2 не является напрямую ранжирующим фактором в Google. В то же время, скорость загрузки — сама по себе значительный фактор ранжирования, поэтому имеет смысл начать использовать HTTP/2 для SEO-продвижения.

Он добавил, что само по себе ускорение работы сайта должно положительно влиять на ранжирование за счет поведенческих факторов. У более «быстрой» страницы меньше процент отказов — скорее всего, больше пользователей что-то сделают на такой странице, и это повлияет на ранжирование в поиске.

Джон Мюллер также сообщил, что Googlebot скоро начнет поддерживать HTTP/2. И кто знает — может, в будущем наличие HTTP/2 на сайте и станет ранжирующим фактором. Ведь поисковики постоянно меняют алгоритмы.

HTTP/1.0 — 1996

В отличие от HTTP/0.9, спроектированного только для HTML-ответов, HTTP/1.0 справляется и с другими форматами: изображения, видео, текст и другие типы контента. В него добавлены новые методы (такие, как POST и HEAD). Изменился формат запросов/ответов. К запросам и ответам добавились HTTP-заголовки. Добавлены коды состояний, чтобы различать разные ответы сервера. Введена поддержка кодировок. Добавлены составные типы данных (multi-part types), авторизация, кэширование, различные кодировки контента и ещё многое другое.

Вот так выглядели простые запрос и ответ по протоколу HTTP/1.0:

Помимо запроса клиент посылал персональную информацию, требуемый тип ответа и т.д. В HTTP/0.9 клиент не послал бы такую информацию, поскольку заголовков попросту не существовало.

Пример ответа на подобный запрос:

В начале ответа стоит HTTP/1.0 (HTTP и номер версии), затем код состояния — 200, затем — описание кода состояния.

В новой версии заголовки запросов и ответов были закодированы в ASCII (HTTP/0.9 весь был закодирован в ASCII), а вот тело ответа могло быть любого контентного типа — изображением, видео, HTML, обычным текстом и т. п. Теперь сервер мог послать любой тип контента клиенту, поэтому словосочетание «Hyper Text» в аббревиатуре HTTP стало искажением. HMTP, или Hypermedia Transfer Protocol, пожалуй, стало бы более уместным названием, но все к тому времени уже привыкли к HTTP.

Один из главных недостатков HTTP/1.0 — то, что вы не можете послать несколько запросов во время одного соединения. Если клиенту надо что-либо получить от сервера, ему нужно открыть новое TCP-соединение, и, как только запрос будет выполнен, это соединение закроется. Для каждого следующего запроса нужно создавать новое соединение.

Почему это плохо? Давайте предположим, что вы открываете страницу, содержащую 10 изображений, 5 файлов стилей и 5 JavaScript файлов. В общей сложности при запросе к этой странице вам нужно получить 20 ресурсов — а это значит, что серверу придётся создать 20 отдельных соединений. Такое число соединений значительно сказывается на производительности, поскольку каждое новое TCP-соединение требует «тройного рукопожатия», за которым следует медленный старт.

Тройное рукопожатие

«Тройное рукопожатие» — это обмен последовательностью пакетов между клиентом и сервером, позволяющий установить TCP-соединение для начала передачи данных.

  • SYN — Клиент генерирует случайное число, например, x, и отправляет его на сервер.
  • SYN ACK — Сервер подтверждает этот запрос, посылая обратно пакет ACK, состоящий из случайного числа, выбранного сервером (допустим, y), и числа x + 1, где x — число, пришедшее от клиента.
  • ACK — клиент увеличивает число y, полученное от сервера и посылает y + 1 на сервер.

Примечание переводчика: SYN — синхронизация номеров последовательности, (англ. Synchronize sequence numbers). ACK — поле «Номер подтверждения» задействовано (англ. Acknowledgement field is significant).

Только после завершения тройного рукопожатия начинается передача данных между клиентом и сервером. Стоит заметить, что клиент может посылать данные сразу же после отправки последнего ACK-пакета, однако сервер всё равно ожидает ACK-пакет, чтобы выполнить запрос.

Тем не менее, некоторые реализации HTTP/1.0 старались преодолеть эту проблему, добавив новый заголовок Connection: keep-alive, который говорил бы серверу «Эй, дружище, не закрывай это соединение, оно нам ещё пригодится». Однако эта возможность не была широко распространена, поэтому проблема оставалась актуальна.

Помимо того, что HTTP — протокол без установления соединения, в нём также не предусмотрена поддержка состояний. Иными словами, сервер не хранит информации о клиенте, поэтому каждому запросу приходится включать в себя всю необходимую серверу информацию, без учёта прошлых запросов. И это только подливает масла в огонь: помимо огромного числа соединений, которые открывает клиент, он также посылает повторяющиеся данные, излишне перегружая сеть.

Что означает это предупреждение?

HTTP – это протокол, по которому данные с сайта и обратно передаются в незащищенном виде. Злоумышленники могут перехватить на сайтах с протоколом http//: ваши данные, например, номер банковской карты.

Яндекс Браузер, помечая такой протокол красным треугольником, предупреждает вас об отсутствии на сайте нужного шифрования. Главная задача опции Protect – это проверка загруженных пользователем сайтов и блокировка потенциально зараженных вирусами.

Что именно проверяет Protect:

  • Wi-Fi сети на подключенных гаджетах;
  • онлайн-платежи, мобильный банкинг, номера банковских карт, пароли;
  • компьютерные угрозы, которые по каким-то причинам не блокируются встроенным антивирусом.

Обратите внимание:

Почему не удалось найти ip-адрес сервера и как быть?

Сейчас же безопасность интернет-пользователей стала приоритетной, потому любой сайт должен иметь защищенный протокол https//:, даже если вы как пользователь там ничего не вводите.

Даже если вы оставляете свой емейл для комментирования, у сайта должен быть защищенный протокол. Яндекс Браузер с помощью красного треугольника помогает вам понять – защищено ли соединение или нет.

Обратите внимание:

На сайте используется неподдерживаемый протокол: как исправить?

У протокола https безопасность настроена на несколько уровней, а трафик, который передается от клиента к серверу, обязательно шифруется. Для этого также применяются протоколы TSL/ SSL.

Поисковики Google и Яндекс мотивируют владельцев сайтов переходить на https. Но страницы, которые содержат требование ввода персональных данных, в обязательном порядке должны иметь https.

Заголовки запроса

В запросе клиент должен передать URI запрашиваемого документа. Это может быть сделано в абсолютной или относительной форме. В первом случае в состав URI должны входить название протокола и имя сервера.

Во втором случае передается только путь к документу.

В этом случае имя и порт хоста, может быть передано в строке заголовка Host:

Наличие имени хоста необходимо для обращений к прокси-серверу, или для обращения к одному из виртуальных хостов размещенных на одном сервере. Если хост, заданный одним из двух способов, не существует, то сервер возвращает ответ 400- Bad Request.

Поля заголовка запроса позволяют клиенту передавать серверу дополнительную информацию о запросе и о самом клиенте.

Передача данных в ответе сервера

Несколько заголовков используемых в ответе сервера, позволяют точно описать формат и размер передаваемых данных.

Content-Type: Тип сообщения, аналогичен типу содержимого в стандарте MIME и указывается в формате тип/подтип.

Серверы используют типы сообщения в заголовках Content-Type, чтобы сообщить клиенту о том, в каком формате передается прилагаемое содержимое

В типе сообщения для текстовых форматов может быть указана использованная кодировка.

Content-Encoding: Для 8 битового протокола HTTP, данный заголовок означает, что данные дополнительно закодированы, например сжаты. Определены три типа кодирования gzip, compress, deflate, что соответствует форматам программ gzip, compress и библиотеки zlib. Например:

Большое значение в реализации протокола HTTP имеет уведомление клиента о размере данных в теле ответа, т.к. в силу 8 битовости протокола тело ответа не может сопровождаться каким либо ограничителем.

Content-Length: Длина тела сообщения. В протоколе HTTP/1.0 это была единственная возможность передать клиенту информацию о размере данных.

Кодирование данных кусками (chunced) было введено в HTTP/1.1. В заголовках ответа должна присутствовать строка

А тело сообщения строится по следующим правилам

Признаком завершения передачи является кусок нулевой длины.

Следует отметить, что символы в конце куска, не являются его частью.
Подобное кодирование очень удобно в тех случаях, когда размер данных заранее неизвестен, и достаточно велик.

Еще одной возможностью для кодирования данных является использование для тела сообщения типа multipart/bytranges – эквивалентного MIME multipart/*

Если размер сообщения не указан, не используется кодирование кусками и тип тела сообщения не multipart/bytranges, то клиент определяет конец тела ответа по закрытию TCP соединения.

Аутентификация

HTTP действительно поддерживает рудиментарную форму аутентификации, называемой Основной Проверкой Подлинности (Basic Authentication), точно также как и более надежную форму — Краткую Проверку Подлинности (Digest Authentication).

В Основной Проверке Подлинности сервер сразу же отвергает запрос клиента с WWW-Authenticate и кодом состояния 401 — Unauthorized. Увидев этот заголовок, браузер отображает диалоговое окно входа с запросом имени пользователя и пароля. Эта информация отправляется в фотмате BASE64 в заголовке запроса на аутентификацию. Теперь сервер может проверить запрос и разрешить доступ, если учетные данные верны. Некоторые серверы могут даже отправить заголовок Autentification-Info, содержащий дополнительные детали об аутентификации.

Следствием Основной Проверки Подлинности является Проверка Подлинности Прокси. Вместо веб-сервера, задача аутентификации состоит в запрашивании промежуточного прокси-сервера. Прокси-сервер отправляет заголовок Proxy-Authenticate с кодом статуса 407-Unauthorized. В свою очередь, клиенту предлагается посылать мандаты с помощью заголовка запроса Proxy-Authorization.

Краткая Проверка Подлинности похожа на Основную ПП техникой, схожей с WWW-Authenticate и заголовками авторизации, но Краткая ПП использует более надежные хэш-функции для шифрования имени пользователя и пароля (обычно- MD5 или KD дайджест-функций). Хотя Краткая ПП должна быть более безопасной, чем Основная ПП, веб-сайты обычно используют Основную ПП из-за её простоты. Для смягчения проблем безопасности Основные ПП используются в сочетании с SSL (Secure Sockets Layer).

Протокол Secure HTTP

Протокол HTTPS обеспечивает безопасное соединение в Интернете. Самый простой способ узнать, используете ли Вы его: проверить адресную строку браузера. Защищенный компонент HTTPs включает в себя вставленный слой шифрования / дешифрования между HTTP и TCP- Secure Sockets Layer (SSL) или улучшенный протокол Transport Layer Security (TLS).

SSL использует мощный алгоритм шифрования при помощи RSA и криптографии с открытым ключом. Так как безопасные транзакции в Интернете необычайно важны, разработка универсальных стандартов, основанных на Инфраструктуре Открытых Ключей (PKI) ведется уже давно.

Существующие клиенты / серверы не должны изменить способ обработки сообщения, так что большая часть тяжелой работы проходит в слое SSL. Таким образом, вы можете разрабатывать веб-приложения, используя Основные ПП и автоматически пользоваться преимуществами SSL за счет перехода на протокол https://. Однако, чтобы веб-приложение работало на протоколе HTTPS, необходимо иметь рабочий цифровой сертификат, развернутый на сервере.

Сертификаты

Также как человеку нужен паспорт для удостоверения личности, серверу нужен цифровой сертификат для идентификации. Сертификаты (или “certs”) выдаются Центром Сертификации (CA) и поручаются за Вашу личность в Интернете. CA хранят в себе PKI. Наиболее распространенная форма сертификатов- стандарт X.509 v3, который содержит такую информацию:

  • поставщик сертификата,
  • алгоритм сертификации,
  • имя субъекта или организации, для которой создается сертификат,
  • открытый ключ информации для субъекта,
  • Сертифицированная Подпись, использовавшая заданный алгоритм подписи.

Когда клиент делает запрос через HTTPS, он сначала пытается найти сертификат на сервере. Если сертификат найден, его сверяют со списком Центров Сертификации. Если он не подходит ни к одному из перечисленных Центров, пользователю открывается диалоговое окно с предупреждением об ошибке сертификации сайта.

Как только сертификат сверен, вступает в силу полная и безопасная передача SSL.

О средствах настройки, проверки

В операционной системе Windows настройка протокола становится одной из самых простых операций. Достаточно зайти в меню с параметрами Сети, где выбирается соответствующий пункт. Раньше решение вопроса было более простым. Сейчас пользователи выбирают между двумя вариантами подключения:

  • IPv6;
  • IPv4.

Обратите внимание! iPv4 — вариант стандартной настройки для большинства ситуаций. IPv6 — новая версия протокола, которая до сих пор остаётся невостребованной

Доступ к состоянию сети с помощью системного трея помогут провести проверку в случае необходимости. Значок на панели сообщит пользователю о том, доступна сеть или нет. Определение текущего статуса не доставляет проблем.

Основы HTTP

HTTP обеспечивает общение между множеством хостов и клиентов, а также поддерживает целый ряд сетевых настроек.

В основном, для общения используется TCP/IP, но это не единственный возможный вариант. По умолчанию, TCP/IP использует порт 80, но можно заюзать и другие.

Общение между хостом и клиентом происходит в два этапа: запрос и ответ. Клиент формирует HTTP запрос, в ответ на который сервер даёт ответ (сообщение). Чуть позже, мы более подробно рассмотрим эту схему работы.

Текущая версия протокола HTTP — 1.1, в которой были введены некоторые новые фишки. На мой взгляд, самые важные из них это: поддержка постоянно открытого соединения, новый механизм передачи данных chunked transfer encoding, новые заголовки для кэширования. Что-то из этого мы рассмотрим во второй части данной статьи.

Структура пакета HTTP

Пакет HTTP состоит из 3 частей. Первая часть это запрос, либо со стороны клиента, либо от статус ответа со стороны сервера. Например, запрос GET означает, что клиент просит передать ему web-страницу, которая находится на сервере вот по такому пути GET/tehnologii/protokoli в ответ сервер пересылает статус выполнения операции код и символьное сообщение, например 200 OK. Это означает, что страница нашлась на сервере и сервер передает ее в теле сообщения.

Затем могут идти и заголовки, которых может быть несколько. В версии HTTP 1.0 заголовки были не обязательны, но в версии HTTP 1.1 в запросе обязательно использовать заголовок Host:www.zvondozvon.ru, где указываются доменное имя сервера, у которого вы хотите запросить веб-страницу. Это сделано из-за того, что на одном и том же IP-адресе, может работать несколько веб-сайтов и в web серверу необходимо знать с какого сайта вы хотите загрузить страницу. 

Также могут быть другие заголовки, например тип передаваемого сообщения в примере Content-Type: text/html; charset=utf-8, размер передаваемого сообщения Content-Length: 5161 байт. 

И затем может идти тело сообщения в котором передается запрашиваемая веб-страница или передаются какие-то параметры на сервер. Тело сообщения является необязательным например, в запросе клиента на передачу веб-страницы с сервера тело не нужно. 

Symbols

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector