Как сравнить string по их длине в java 7 и java 8?

Введение в строки. Класс String

Последнее обновление: 31.10.2018

Строка представляет собой последовательность символов. Для работы со строками в Java определен класс String, который предоставляет ряд методов для манипуляции строками.
Физически объект String представляет собой ссылку на область в памяти, в которой размещены символы.

Для создания новой строки мы можем использовать один из конструкторов класса String, либо напрямую присвоить строку в двойных кавычках:

public static void main(String[] args) {
        
    String str1 = "Java";
    String str2 = new String(); // пустая строка
    String str3 = new String(new char[] {'h', 'e', 'l', 'l', 'o'});
    String str4 = new String(new char[]{'w', 'e', 'l', 'c', 'o', 'm', 'e'}, 3, 4);//3 -начальный индекс, 4 -кол-во символов
        
    System.out.println(str1); // Java
    System.out.println(str2); //
    System.out.println(str3); // hello
    System.out.println(str4); // come
}

При работе со строками важно понимать, что объект String является неизменяемым (immutable). То есть при любых операциях
над строкой, которые изменяют эту строку, фактически будет создаваться новая строка

Поскольку строка рассматривается как набор символов, то мы можем применить метод length() для нахождения длины строки или длины набора символов:

String str1 = "Java";
System.out.println(str1.length()); // 4

А с помощью метода toCharArray() можно обратно преобразовать строку в массив символов:

String str1 = new String(new char[] {'h', 'e', 'l', 'l', 'o'});
char[] helloArray = str1.toCharArray();

Строка может быть пустой. Для этого ей можно присвоить пустые кавычки или удалить из стоки все символы:

String s = "";   // строка не указывает на объект
if(s.length() == 0) System.out.println("String is empty");

В этом случае длина строки, возвращаемая методом length(), равна 0.

Класс String имеет специальный метод, который позволяет проверить строку на пустоту — isEmpty(). Если строка пуста, он возвращает true:

String s = "";   // строка не указывает на объект
if(s.length() == 0) System.out.println("String is empty");

Переменная String может не указывать на какой-либо объект и иметь значение null:

String s = null;   // строка не указывает на объект
if(s == null) System.out.println("String is null");

Значение null не эквивалентно пустой строке. Например, в следующем случае мы столкнемся с ошибкой выполнения:

String s = null;   // строка не указывает на объект
if(s.length()==0) System.out.println("String is empty");	// ! Ошибка

Так как переменная не указывает ни на какой объект String, то соответственно мы не можем обращаться к методам объекта String.
Чтобы избежать подобных ошибок, можно предварительно проверять строку на null:

String s = null;   // строка не указывает на объект
if(s!=null && s.length()==0) System.out.println("String is empty");

Основные методы класса String

Основные операции со строками раскрывается через методы класса String, среди которых можно выделить следующие:

  • concat(): объединяет строки

  • valueOf(): преобразует объект в строковый вид

  • join(): соединяет строки с учетом разделителя

  • сompare(): сравнивает две строки

  • charAt(): возвращает символ строки по индексу

  • getChars(): возвращает группу символов

  • equals(): сравнивает строки с учетом регистра

  • equalsIgnoreCase(): сравнивает строки без учета регистра

  • regionMatches(): сравнивает подстроки в строках

  • indexOf(): находит индекс первого вхождения подстроки в строку

  • lastIndexOf(): находит индекс последнего вхождения подстроки в строку

  • startsWith(): определяет, начинается ли строка с подстроки

  • endsWith(): определяет, заканчивается ли строка на определенную подстроку

  • replace(): заменяет в строке одну подстроку на другую

  • trim(): удаляет начальные и конечные пробелы

  • substring(): возвращает подстроку, начиная с определенного индекса до конца или до определенного индекса

  • toLowerCase(): переводит все символы строки в нижний регистр

  • toUpperCase(): переводит все символы строки в верхний регистр

Разберем работу этих методов.

НазадВперед

Класс Object и его методы

Последнее обновление: 21.04.2018

Хотя мы можем создать обычный класс, который не является наследником, но фактически все классы наследуются от класса Object.
Все остальные классы, даже те, которые мы добавляем в свой проект, являются неявно производными от класса Object.
Поэтому все типы и классы могут реализовать те методы, которые определены в классе Object. Рассмотрим эти методы.

toString

Метод служит для получения представления данного объекта в виде строки. При попытке вывести строковое представления
какого-нибудь объекта, как правило, будет выводиться полное имя класса. Например:

public class Program{
     
	public static void main(String[] args) {
			
		Person tom = new Person("Tom");
		System.out.println(tom.toString()); // Будет выводить что-то наподобие Person@7960847b
	}
}
class Person {
    
    private String name;
	
    public Person(String name){
    
        this.name=name;
    }
}

Полученное мной значение (в данном случае ) вряд ли может служить хорошим строковым описанием объекта.
Поэтому метод нередко переопределяют. Например:

public class Program{
     
	public static void main(String[] args) {
			
		Person tom = new Person("Tom");
		System.out.println(tom.toString()); // Person Tom
	}
}
class Person {
    
    private String name;
   
    public Person(String name){
    
        this.name=name;
    }
	
	@Override
	public String toString(){
         
        return "Person " + name;
    }
}

Метод hashCode

Метод hashCode позволяет задать некоторое числовое значение, которое будет соответствовать данному объекту или его хэш-код.
По данному числу, например, можно сравнивать объекты.

Например, выведем представление вышеопределенного объекта:

Person tom = new Person("Tom");
System.out.println(tom.hashCode()); // 2036368507

Но мы можем задать свой алгоритм определения хэш-кода объекта:

class Person {
    
    private String name;
   
    public Person(String name){
    
        this.name=name;
    }
	
	@Override
	public int hashCode(){

        return 10 * name.hashCode() + 20456;
    }
}

Получение типа объекта и метод getClass

Метод позволяет получить тип данного объекта:

Person tom = new Person("Tom");
System.out.println(tom.getClass()); // class Person

Метод equals

Метод equals сравнивает два объекта на равенство:

public class Program{
     
	public static void main(String[] args) {
			
		Person tom = new Person("Tom");
		Person bob = new Person("Bob");
		System.out.println(tom.equals(bob)); // false
		
		Person tom2 = new Person("Tom");
		System.out.println(tom.equals(tom2)); // true
	}
}
class Person {
    
    private String name;
	
    public Person(String name){
    
        this.name=name;
    }
	
	@Override
	public boolean equals(Object obj){
        
        if (!(obj instanceof Person)) return false;

        Person p = (Person)obj;
        return this.name.equals(p.name);
    }
}

Метод equals принимает в качестве параметра объект любого типа, который мы затем приводим к текущему, если они являются объектами
одного класса.

Оператор instanceof позволяет выяснить, является ли переданный в качестве параметра объект объектом определенного класса,
в данном случае класса Person. Если объекты принадлежат к разным классам, то их сравнение не имеет смысла, и возвращается значение false.

Затем сравниваем по именам. Если они совпадают, возвращаем true, что будет говорить, что объекты равны.

НазадВперед

2 Поиск подстрок

Вторая по популярности операция после сравнения строк — это поиск одной строки в другой. Для этого у класса String тоже есть немного методов:

Методы Описание
Ищет строку в текущей строке. Возвращает индекс первого символа встретившийся строки.
Ищет строку в текущей строке, пропустив первых символов. Возвращает индекс найденного вхождения.
Ищет строку в текущей строке с конца. Возвращает индекс первого вхождения.
Ищет строку в текущей строке с конца, пропустив первых символов.
Проверяет, что текущая строка совпадает с шаблоном, заданным регулярным выражением.

Методы и часто используются в паре. Первый позволяет найти первое вхождение переданной подстроки в текущей строке. А второй метод позволяет найти второе, третье и т.д. вхождения за счет того, что пропускает первые index символов.

Допустим, у нас есть url типа такого: «https://domen.ru/about/reviews», и мы хотим заменить имя домена на javarush.ru. Домены в урлах могут быть разными, но мы знаем, что:

  • Перед именем домена идут два слеша
  • После имени домена идет одинарный слеш

Вот как бы выглядел код такой программы:

Код Примечания
Создание объекта Scanner
Чтение строки с консоли
Получаем индекс первого вхождения строки
Получаем индекс первого вхождения строки , но ищем только после символов .
Получаем строку от начала и заканчивая символами
Получаем строку от и до конца.
Склеиваем строки и новый домен.

Методы и работают точно так же, только поиск ведется с конца строки к началу.

4 Класс Boolean

Тип практически такой же, как тип . Отличия минимальны.

Ниже мы покажем упрощенный вариант класса :

Код Описание
Константы: и
Переменная-значение
Конструктор класса
Метод возвращает значение внутренней переменной-значения
Этот статический метод умеет преобразовывать в и в .

В типе есть две константы (два поля):

Константы класса Аналог типа boolean Описание
истина
ложь

Работать с ними можно так же, как и с типом :

Код Примечание
— единственный класс, который можно писать внутри условия
Все три переменные равны /
Константы можно сравнивать и через и через
Так тоже будет работать.

Autoboxing тут работает отлично, поэтому можете пользоваться этим типом так же, как типом : никаких подводных камней тут нет.

Как записано Как это работает

А вот как происходят сравнения между типами и :

Если очень нужно создать независимый объект , то надо создать его явно:

И еще один пример: использование внутри :

Код Примечание
Скомпилируется и будет работать

Скомпилируется, но работать не будет:

Код Примечание
Ошибка. В этой строке кинется исключение

Следующий этап: язык C++

В конце 1970-х-начале 1980-х гг. язык С стал господствующим языком про­граммирования и продолжает широко применяться до сих пор. А если С — удач­ный и удобный язык, то может возникнуть вопрос: чем обусловлена потребность в каком-то другом языке? Ответ состоит в постоянно растущей сложности про­грамм. На протяжении всей истории развития программирования постоянно растущая сложность программ порождала потребность в более совершенных спо­собах преодоления их сложности. Язык C++ явился ответом на эту потребность. Чтобы лучше понять, почему потребность преодоления сложности программ яв­ляется главной побудительной причиной создания языка C++, рассмотрим следу­ющие факторы.

С момента изобретения компьютеров подходы к программированию корен­ным образом изменились. Когда компьютеры только появились, программирова­ние осуществлялось изменением двоичных машинных инструкций вручную с па­нели управления компьютера. До тех пор, пока длина программ не превышала нескольких сотен инструкций, этот подход был вполне приемлем. В связи с разрас­танием программ был изобретен язык ассемблера, который позволил программистам работать с более крупными и все более сложными программами, используя символьные представления машинных инструкций. По мере того как программы продолжали увеличиваться в объеме, появились языки высокого уровня, которые предоставили программистам дополнительные средства для преодоления сложности программ.

Первым языком программирования, который получил широкое распростране­ние, был, конечно же, FORTRAN. Хотя он и стал первым впечатляющим этапом в программировании, его вряд ли можно считать языком, который способствует созданию ясных и простых для понимания программ. 1960-е годы ознаменовались зарождением структурного программирования. Эта методика программирования наи­более ярко проявилась в таких языках, как С. Пользуясь структурированными язы­ками, программисты впервые получили возможность без особых затруднений соз­давать программы средней сложности. Но и методика структурного программиро­вания уже не позволяла программистам справиться со сложными проектами, когда они достигали определенных масштабов. К началу 1980-х. сложность многих про­ектов начала превышать предел, позволявший справиться с ними, применяя струк­турный подход. Для решения этой проблемы была изобретена новая методика про­граммирования, получившая название объектно-ориентированного программирования (ООП). Объектноориентированное программирование подробно рассматривает^ ся в последующих главах, а здесь приводится лишь краткое его определение: ООП — это методика программирования, которая помогает организовывать сложные про­граммы, применяя принципы наследования, инкапсуляции и полиморфизма.

Из всего сказанного выше можно сделать следующий вывод: несмотря на то, что С является одним из лучших в мире языков программирования, существует предел его способности справляться со сложностью программ. Как только раз­меры программы превышают определенную величину, она становится слишком сложной, чтобы ее можно было охватить как единое целое. Точная величина этого предела зависит как от структуры самой программы, так и от подходов, исполь­зуемых программистом, но начиная с определенного момента любая программа становится слишком сложной для понимания и внесения изменений, а следова­тельно, неуправляемой. Язык C++ предоставил возможности, которые позволили программистам преодолеть этот порог сложности, чтобы понимать крупные про­граммы и управлять ими.

Язык C++ был изобретен Бьярне Страуструпом (Bjarne Stroustrup) в 1979 г., когда он работал в компании Bell Laboratories в городе Мюррей-Хилл, шт. Нью-Джерси. Вначале Страуструп назвал новый язык “С with Classes” (С с классами). Но в 1983 г. это название было изменено на C++. Язык C++ расширяет функцио­нальные возможности языка С, добавляя в него объектно-ориентированные свой­ства. А поскольку язык C++ построен на основе С, то в нем поддерживаются все функциональные возможности, свойства и преимущества С. Это обстоятельство явилось главной причиной успешного распространения C++ в качестве языка программирования. Изобретение языка C++ не было попыткой создать совершенно новый язык программирования. Напротив, все усилия были направлены на усовершенствование уже существующего очень удачного языка.

Производительность конкатенации

При объединении строк вам следует остерегаться возможных проблем с производительностью. Конкатенация двух строк будет преобразована компилятором Java в нечто вроде этого:

String one = "Hello";
String two = " World";

String three = new StringBuilder(one).append(two).toString();

Создается новый StringBuilder, который передает первую строку в свой конструктор, а вторую — в свой метод append(), прежде чем вызвать метод toString(). Этот код фактически создает два объекта: экземпляр StringBuilder и новый экземпляр String, возвращенный методом toString().

При выполнении самих себя в виде одного оператора эти дополнительные затраты на создание объекта незначительны. Однако когда выполняется внутри цикла, это другая история.

Вот цикл, содержащий вышеуказанный тип конкатенации строк:

String[] strings = new String[]{"one", "two", "three", "four", "five" };

String result = null;
for(String string : strings) {
    result = result + string;
}

Этот код будет скомпилирован в нечто похожее на это:

String[] strings = new String[]{"one", "two", "three", "four", "five" };

String result = null;
for(String string : strings) {
    result = new StringBuilder(result).append(string).toString();
}

Теперь для каждой итерации в этом цикле создается новый StringBuilder. Кроме того, объект String создается методом toString(). Это приводит к небольшим расходам на создание экземпляров за одну итерацию: один объект StringBuilder и один объект String. Само по себе не является настоящим убийцей производительности, хотя.

Каждый раз, когда выполняется новый код StringBuilder(result), конструктор StringBuilder копирует все символы из результирующего String в StringBuilder. Чем больше итераций цикла, тем больше будет результат String. Чем больше растет результат String, тем больше времени требуется для копирования символов из него в новый StringBuilder и повторного копирования символов из StringBuilder во временную строку, созданную методом toString(). Другими словами, чем больше итераций, тем медленнее становится каждая итерация.

Самый быстрый способ объединения строк — создать StringBuilder один раз и повторно использовать один и тот же экземпляр внутри цикла. Вот как это выглядит:

String[] strings = new String[]{"one", "two", "three", "four", "five" };

StringBuilder temp  = new StringBuilder();
for(String string : strings) {
    temp.append(string);
}
String result = temp.toString();

Этот код избегает как экземпляров объектов StringBuilder и String внутри цикла, так и, следовательно, позволяет избежать двухкратного копирования символов, сначала в StringBuilder, а затем снова в String.

Соединение строк в Java

Чтобы соединить строки в Java, подойдёт операция сложения «+»:

String str1 = "Java";
String str2 = "Hi";
String str3 = str1 + " " + str2;

System.out.println(str3); // Hi Java

Если же в предстоящей операции сложения строк будет применяться нестроковый объект, допустим, число, данный объект преобразуется к строке:

String str3 = "Год " + 2020;

По факту, когда мы складываем строки с нестроковыми объектами, вызывается метод valueOf() класса String. Этот метод преобразует к строке почти все типы данных. Чтобы преобразовать объекты разных классов, valueOf вызывает метод toString() данных классов.

Объединять строки можно и с помощью concat():

String str1 = "Java";
String str2 = "Hi";
str2 = str2.concat(str1); // HiJava

Метод принимает строку, с которой нужно объединить вызывающую строку, возвращая нам уже соединённую строку.

Также мы можем использовать метод join(), позволяющий объединять строки с учетом разделителя. Допустим, две строки выше слились в слово «HiJava», однако мы бы хотели разделить подстроки пробелом. Тут и пригодится join():

String str1 = "Java";
String str2 = "Hi";
String str3 = String.join(" ", str2, str1); // Hi Java

Метод join — статический. Первый параметр — это разделитель, который будет использоваться для разделения подстрок в общей строке. Последующие параметры осуществляют передачу через запятую произвольного набора объединяемых подстрок — в нашем случае их две, но можно и больше.

Creating Format Strings

You have printf() and format() methods to print output with formatted numbers. The String class has an equivalent class method, format(), that returns a String object rather than a PrintStream object.

Using String’s static format() method allows you to create a formatted string that you can reuse, as opposed to a one-time print statement. For example, instead of −

Example

System.out.printf("The value of the float variable is " +
                  "%f, while the value of the integer " +
                  "variable is %d, and the string " +
                  "is %s", floatVar, intVar, stringVar);

You can write −

String fs;
fs = String.format("The value of the float variable is " +
                   "%f, while the value of the integer " +
                   "variable is %d, and the string " +
                   "is %s", floatVar, intVar, stringVar);
System.out.println(fs);

Математика

Float или Double?

Программисты часто не могут выбрать необходимую точность для чисел с плавающей запятой. Float требует всего 4 байта, но имеет только 7 значащих цифр, а Double в два раза точнее (15 цифр), но в два раза прожорливее.

Фактически, большинство процессоров могут одинаково эффективно работать как с Float, так и с Double, поэтому воспользуйтесь рекомендацией Бьорна Страуструпа (автор языка С++):

Проверка на нечетность

Можно ли использовать этот код для точного определения нечетного числа?

Надеюсь, вы заметили хитрость. Если мы решим таким образом проверить отрицательное нечетное число (например, -5), остаток от деления не будет равен единице, поэтому воспользуйтесь более точным методом:

Он не только решает проблему отрицательных чисел, но и работает более производительно, чем предыдущий метод. Арифметические и логические операции выполняются намного быстрее, чем умножение и деление.

3 Создание подстрок

Кроме сравнения строк и поиска подстрок, есть еще одно очень популярное действие — получение подстроки из строки. В предыдущем примере вы как раз видели вызов метода , который возвращал часть строки.

Вот список из 8 методов получения подстрок из текущей строки:

Методы Описание
Возвращает подстроку, заданную интервалом символов .
Повторяет текущую строку n раз
Возвращает новую строку: заменяет символ на символ
Заменяет в текущей строке подстроку, заданную регулярным выражением.
Заменяет в текущей строке все подстроки, совпадающие с регулярным выражением.
Преобразует строку к нижнему регистру
Преобразует строку к верхнему регистру
Удаляет все пробелы в начале и конце строки

Вот краткое описание существующих методов:

Метод

Метод возвращает новую строку, которая состоит из символов текущей строки, начиная с символа под номером и заканчивая . Как и во всех интервалах в Java, символ с номером в интервал не входит. Примеры:

Код Результат

Если параметр не указывается (а так можно), подстрока берется от символа beginIndex и до конца строки.

Метод

Метод repeat просто повторяет текущую строку раз. Пример:

Код Результат

Метод

Метод возвращает новую строку, в которой все символы заменены на символ . Длина строки при этом не меняется. Пример:

Код Результат

Методы и

Метод заменяет все вхождения одной подстроки на другую. Метод заменяет первое вхождение переданной подстроки на заданную подстроку. Строка, которую заменяют, задается регулярным выражением. Разбирать регулярные выражения мы будем в квесте Java Multithreading.

Примеры:

Код Результат

Методы

С этими методами мы познакомились, когда только в первый раз учились вызывать методы класса .

Метод

Метод удаляет у строки пробелы с начала и с конца строки. Пробелы внутри строки никто не трогает. Примеры:

Код Результат

Класс Thread

В Java функциональность отдельного потока заключается в классе Thread. И чтобы создать новый поток, нам надо создать
объект этого класса. Но все потоки не создаются сами по себе. Когда запускается программа, начинает работать главный поток этой программы.
От этого главного потока порождаются все остальные дочерние потоки.

С помощью статического метода Thread.currentThread() мы можем получить текущий поток выполнения:

public static void main(String[] args) {
        
    Thread t = Thread.currentThread(); // получаем главный поток
    System.out.println(t.getName()); // main
}

По умолчанию именем главного потока будет .

Для управления потоком класс Thread предоставляет еще ряд методов. Наиболее используемые из них:

  • getName(): возвращает имя потока

  • setName(String name): устанавливает имя потока

  • getPriority(): возвращает приоритет потока

  • setPriority(int proirity): устанавливает приоритет потока. Приоритет является одним из ключевых факторов для выбора
    системой потока из кучи потоков для выполнения. В этот метод в качестве параметра передается числовое значение приоритета — от 1 до 10.
    По умолчанию главному потоку выставляется средний приоритет — 5.

  • isAlive(): возвращает true, если поток активен

  • isInterrupted(): возвращает true, если поток был прерван

  • join(): ожидает завершение потока

  • run(): определяет точку входа в поток

  • sleep(): приостанавливает поток на заданное количество миллисекунд

  • start(): запускает поток, вызывая его метод

Мы можем вывести всю информацию о потоке:

public static void main(String[] args) {
        
    Thread t = Thread.currentThread(); // получаем главный поток
    System.out.println(t); // main
}

Консольный вывод:

Thread

Первое будет представлять имя потока (что можно получить через ), второе значение 5 предоставляет приоритет
потока (также можно получить через ), и последнее представляет имя группы потоков, к которому относится текущий — по умолчанию также main
(также можно получить через )

Недостатки при использовании потоков

Далее мы рассмотрим, как создавать и использовать потоки. Это довольно легко. Однако при создании многопоточного приложения нам следует учитывать ряд обстоятельств,
которые негативно могут сказаться на работе приложения.

На некоторых платформах запуск новых потоков может замедлить работу приложения. Что может иметь большое значение, если нам критичная производительность
приложения.

Для каждого потока создается свой собственный стек в памяти, куда помещаются все локальные переменные и ряд других данных, связанных с выполнением
потока. Соответственно, чем больше потоков создается, тем больше памяти используется. При этом надо помнить, в любой системе размеры используемой памяти ограничены.
Кроме того, во многих системах может быть ограничение на количество потоков. Но даже если такого ограничения нет, то в любом случае
имеется естественное ограничение в виде максимальной скорости процессора.

НазадВперед

compareTo()

Метод compareTo() сравнивает строку с другой и возвращает int, сообщающий, меньше ли эта строка, равна или больше другой.

  • Если строка в порядке сортировки раньше, чем другая, возвращается отрицательное число.
  • совпадает с другой, возвращается 0.
  • Если находится после другой в порядке сортировки, выводит положительное число.

Вот пример:

String one   = "abc";
String two   = "def";
String three = "abd";

System.out.println( one.compareTo(two)   );
System.out.println( one.compareTo(three) );

В этом примере сравнивается одна строка с двумя другими. Вывод:

-3
-1

Числа отрицательны, потому что одна строка находится в порядке сортировки раньше, чем две другие.

Метод compareTo() фактически принадлежит интерфейсу Comparable.

Решение распространенных проблем

Содержимое директории

Java позволяет вам получать имена всех подкаталогов и файлов в папке в виде массива, который затем можно последовательно прочитать:

Выполнение консольных команд

Java позволяет выполнять консольные команды прямо из кода, используя класс

Очень важно не забывать об обработке исключений

Например, давайте попробуем открыть файл PDF через терминал Java (на Linux’e):

Воспроизведение звуков

Звук — важный компонент многих десктопных приложений и игр. Язык программирования Java предоставляет средства для работы с ним.

Отправка email

Отправить электронную почту на Java очень просто. Вам просто нужно установить Java Mail и указать путь к нему в пути к классам проекта.

Получение координат курсора

Чтобы фиксировать события мыши, вам необходимо реализовать интерфейс . Когда курсор попадает в определенную область, срабатывает обработчик события , из которого вы можете получить точные координаты (используя Swing для UI)

Creating Strings

The most direct way to create a string is to write −

String greeting = "Hello world!";

Whenever it encounters a string literal in your code, the compiler creates a String object with its value in this case, «Hello world!’.

As with any other object, you can create String objects by using the new keyword and a constructor. The String class has 11 constructors that allow you to provide the initial value of the string using different sources, such as an array of characters.

Example

public class StringDemo {

   public static void main(String args[]) {
      char[] helloArray = { 'h', 'e', 'l', 'l', 'o', '.' };
      String helloString = new String(helloArray);  
      System.out.println( helloString );
   }
}

This will produce the following result −

Output

hello.

Note − The String class is immutable, so that once it is created a String object cannot be changed. If there is a necessity to make a lot of modifications to Strings of characters, then you should use String Buffer & String Builder Classes.

Дата и Время

System.currentTimeMillis или System.nanoTime?

В Java есть два стандартных способа проведения операций со временем, и не всегда ясно, какой из них следует выбрать.

Метод возвращает текущее количество миллисекунд с начала эры Unix в формате Long. Его точность составляет от 1 до 15 тысячных долей секунды в зависимости от системы.

Метод имеет точность до одной миллионной секунды (наносекунды) и возвращает текущее значение наиболее точного доступного системного таймера.

Таким образом, метод лучше применять для отображения и синхронизации абсолютного времени, а для измерения относительных интервалов времени.

Валидация Даты из строки

Если необходимо достать объект из обычной строки в Java, можете использовать небольшой утилитный класс, который приведен ниже. Он позаботится обо всех сложностях валидации и преобразовании строки в объект .

Пример его использования:

Результат:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector